Compactifications équivariantes de quotients de SL(2,C)

Carte non disponible

Date/heure
Date(s) - 16/11/2015
14 h 00 min - 15 h 00 min

Catégories Pas de Catégories


Etant donné un sous-groupe discret de SL(2,C), non-élémentaire, on s’intéresse à savoir si l’espace homogène associé peut être compactifié de façon équivariante et tant que variété complexe (si le groupe peut être le stabilisateur d’une action holomorphe quasi-homogène de SL(2,C) sur une variété complexe compacte). On prouve qu’une telle compactification existe si et seulement si le groupe est convexe-cocompact, et que la
compactification est essentiellement unique.


Retour en haut 

Secured By miniOrange