Foliation Theory and Complex Geometry

Carte non disponible

Date/heure
Date(s) - 22/06/2020 - 26/06/2020
Toute la journée

Emplacement
CIRM, Luminy

Catégories


2020 – Jean-Morlet Chair semester 1

Jorge V. PEREIRA – Erwan ROUSSEAU

Foliation Theory and Complex Geometry Théorie des feuilletages et géométrie complexe

CONFERENCE
Foliation Theory and Complex Geometry (event 2252)
Théorie des feuilletages et géométrie complexe

Dates: 22-26 June 2020
Place: CIRM (Marseille Luminy, France)

DESCRIPTION
The theory of holomorphic foliations played an important role in major advances in complex algebraic geometry in the last few decades. It was key to the proof of the abundance conjecture in dimension three and to the proof of Green-Griffiths conjecture for surfaces of positive Segre class. Foliations also appear naturally on the structure theory of varieties (with mild singularities) with numerically trivial canonical divisor.
Complex algebraic geometry, specially birational geometry, provided a new impetus to the study of foliations and also a new paradigm. There is today a quite satisfactory classification of foliated surfaces according to their Kodaira dimension. Recently, foundational results on numerical properties of the canonical bundle of foliations have been proved, as well as reduction of singularities for foliations on 3-folds (both in codimension one and in dimension one). These two results together give strong evidence that a birational theory of foliations with mild singularities is ripe to be developed.

This conference will put together specialists in foliation theory and complex algebraic geometry. It aims at fostering new collaborations at the intersections of these fields, and at disseminating among young researchers the main questions in these fascinating fields of research.This event  is part of  a series of three activities focused on Foliation Theory and Complex Geometry which will take place at CIRM, Marseille, during the First Semester of 2020

SCIENTIFIC COMMITTEE
ORGANIZING COMMITTEE
INVITED SPEAKERS 

SPONSORS
Eric Lozingot
Posts created 3

Articles similaires

Commencez à saisir votre recherche ci-dessus et pressez Entrée pour rechercher. ESC pour annuler.

Retour en haut
Secured By miniOrange