Excited random walk with periodic cookies

Carte non disponible

Date(s) - 23/01/2015
11 h 00 min - 12 h 00 min

Catégories Pas de Catégories

We will discuss excited random walk on the integers in elliptic and identically piled environments with periodic cookies.
This is a discrete time process on the integers defined by parameters $p_1,…,p_M$ in $(0,1)$ for some positive integer $M$, where in the $i$-th visit to an integer $z$ the walker moves to $z+1$ with probability $p_{i \mod M}$, and to $z−1$ with probability $1-p_{i \mod M}$. The main result will be discussed is an explicit formula, in terms of $p_1,…,p_M$, for determining recurrence, transience to the left, or transience to the right. As an application one can easily construct transient walks even when the average drift per period is zero.
This is a joint work with Gady Kozma and Igor Shinkar.

http://www.wisdom.weizmann.ac.il/~talo/]”>[http://www.wisdom.weizmann.ac.il/~talo/]Postdoctoral fellow

Posts created 14

Articles similaires

Commencez à saisir votre recherche ci-dessus et pressez Entrée pour rechercher. ESC pour annuler.

Retour en haut
Secured By miniOrange