Gabor multipliers: applied and theoretical aspects

Carte non disponible

Date(s) - 11/12/2014
10 h 00 min - 11 h 00 min

Catégories Pas de Catégories

Gabor Multipliers are linear operators arising similar to Fourier multipliers: Given an input signal the Gabor expansions is obtained. After multiplication with a sequence of numbers the synthesis operator is applied. From an engineering point of view they are like actions of an audio-engineer who decides in a time-variant manner who the different frequency bands of a signal are amplified or damped. In the mathematical description one deals with function spaces, classes of operators, symbols etc.. For example, the question of best approximation of a given Hilbert Schmidt-operator by Gabor multipiers (in the Hilbert Schmidt norm) is translated into an approximation problem for spline-type functions (comparable to the question of approximating an L2-function on R by a cubic spline function). Gabor multipliers are easily implemented and even the theory of discrete Gabor multipliers provides a non-trivial and interesting chapter of linear algebra.


Posts created 14

Articles similaires

Commencez à saisir votre recherche ci-dessus et pressez Entrée pour rechercher. ESC pour annuler.

Retour en haut
Secured By miniOrange