Small group
CIRM, Luminy, Marseille
https://www.chairejeanmorlet.com/1549.html
Date(s) : 11/01/2016 - 15/01/2016 iCal
0 h 00 min
CIRM – Jean-Morlet Chair
Dipendra PRASAD – Volker HEIERMANN
Relative Aspects in Representation Theory, Langlands Functoriality and Automorphic Forms
Aspects relatifs en théorie de la représentation, fonctorialité de Langlands et formes automorphes
Geometric Methods and Langlands Functoriality in Positive Characteristic (1549)
Méthodes géométriques et fonctorialité de Langlands en caractéristique positive
Dates: 11-15 January 2016 at CIRM (Marseille Luminy, France)
DESCRIPTION
The aim of this workshop is to bring together people working on Geometric methods and on Langlands functoriality in positive characteristic with people more used to representation theoretic and automorphic methods. For example, not many people master yet the theory of Shtukas, especially the one which allowed Vincent Lafforgue recently to prove the global Langlands correspondence in positive characteristic “from automorphic to Galois”. The hope is that it could be fruitful to bring these methods together with the themes of the Jean Morlet Chair semester. One of the main aims of this workshop, therefore, is to review the recent progress on the Global Langlands program for arbitrary reductive groups in Vincent Lafforgue will be a scientific committee member for the workshop, as well as one of the main speakers. The workshop will be open for discussions and spontaneous additional talks, Outline |
- Vincent Lafforgue (CNRS, Université d’Orléans)
- Volker Heiermann (Aix-Marseille Université)
- Eric Opdam (University of Amsterdam)
- Dipendra Prasad (TIFR Mumbai & Aix-Marseille Université)
- Pierre Baumann (CNRS, Université de Strasbourg)
- Carl Wang Erickson (Brandeis University)
- Dragos Fratila (Université de Strasbourg)
- Denis Gaitsgory (Harvard University)
- Volker Heiermann (Aix-Marseille Université)
- Vincent Lafforgue (CNRS, Université d’Orléans)
- Sergey Lysenko (Université de Lorraine)
- Simon Riche (CNRS, Université de Clermont-Ferrand)
Catégories