Isopérimétrie quantitative pour périmètres fractionnaires et potentiels de Riesz

Carte non disponible
Speaker Home page :
Speaker :
Speaker Affiliation :

()

Date/heure
Date(s) - 26/06/2014
16 h 00 min - 17 h 00 min

Catégories


Nous discuterons dans cet exposé l’isopérimétrie des boules pour la fonctionnelle « périmètre fractionnaire d’ordre s » introduite par Caffarelli, Roquejoffre et Savin. Nous expliquerons de façon élémentaire comment obtenir une inégalité isopérimètrique quantitative optimale pour ce type de périmètres par une approche due à Fuglede combinée à une théorie de régularité adaptée. Nous montrerons enfin comment utiliser ce type d’inégalités pour démontrer l’existence de minima à volume petit pour le problème variationnel suivant : « Trouver un ensemble E de volume donné minimisant la fonctionnelle périmètre + potentiel de Riesz ». Il s’agit d’un travail en collaboration avec A. Figalli, N. Fusco, M. Morini, et F. Maggi.

https://www.ljll.math.upmc.fr/~millot/


Retour en haut 

Secured By miniOrange