Kernel spatial regression estimation for non-stationary process with applications

Carte non disponible

Date/heure
Date(s) - 12/06/2017
15 h 30 min - 16 h 30 min

Catégories Pas de Catégories


Let ( Z i , i ∈ Z N ) be a spatial process where Z i = ( X i , Y i ) are such the Y i ‘s are real-valued and integrable variable and X i ‘s are valued in a (semi-)metric separable space ( E ,d ). This work deals with the problem of the estimation the regression function, r defined by r( x ) =E( Y i | X i =x ) when the process ( Z i ) is not strictly stationary. We study the asymptotic behavior of the kernel estimator under mixing and local stationarity conditions. We also discuss the theoretical and practical aspects of relaxing the stationary hypothesis and present some applications.

https://www.researchgate.net/profile/Anne_Francoise_Yao

Portrait vidéo


Olivier CHABROL
Posts created 14

Articles similaires

Commencez à saisir votre recherche ci-dessus et pressez Entrée pour rechercher. ESC pour annuler.

Retour en haut
Secured By miniOrange