Le tronc d’un champ de vecteurs, un invariant asymptotique

Carte non disponible

Date/heure
Date(s) - 11/02/2019
14 h 00 min - 15 h 00 min

Catégories Pas de Catégories


L’intérêt pour les invariants sous difféomorphisme des champs de vecteurs trouve une motivation dans les équations d’Euler d’un fluide. L’invariant le plus connu est l’hélicité introduite par Moreau, Moffat et Woltjer dans les années 60. Arnold a donné plus tard une interprétation de l’hélicité comme un nombre d’enlacement asymptotique. Il n’y a pas beaucoup d’autres invariants connus, malgré des constructions à la Arnold faites par Gambaudo-Ghys, Baader et Baader-Marché qui ont donné de nouvelles interprétations de l’hélicité (pour les mesures ergodiques). Dans cet exposé je vais expliquer comment construire un invariant à partir du tronc (trunk en anglais) d’un noeud.
Ceci est en travail en collaboration avec Pierre Dehornoy.

http://irma.math.unistra.fr/~rechtman/

Olivier CHABROL
Posts created 14

Articles similaires

Commencez à saisir votre recherche ci-dessus et pressez Entrée pour rechercher. ESC pour annuler.

Retour en haut
Secured By miniOrange