Mathematical Models in Evolutionary Biology (Thematic Month 2020)

Conference
CIRM, Luminy, Marseille
https://conferences.cirm-math.fr/2302.html

Date(s) : 10/02/2020 - 14/02/2020   iCal
0 h 00 min

CONFERENCE

Mathematical Models in Evolutionary Biology – Modèles mathématiques en biologie de l’évolution

10 – 14 February 2020
Scientific Committee
Comité scientifique
Vincent Bansaye (CMAP, Ecole Polytechnique)
Vincent Calvez (ICJ, Université Lyon 1)
Organizing Committee
Comité d’organisation
Nicolas Champagnat (Inria Nancy – Grand Est)
Jérôme Coville (BioSP, INRA Avignon)
Richard Gomulkiewicz (Washington State University)
François Hamel (Aix Marseille Université)
Lionel Roques (BioSP, INRA Avignon)

Description
In recent years, several modeling approaches have been proposed to study questions from quantitative evolutionary biology. These approaches have been developed by mathematicians specializing in the analysis of PDEs, mathematicians specializing in probability, and also evolutionary biologists. The purpose of this week is to bring together researchers from these three different backgrounds, in order to take stock of the existing approaches, and to work on new perspectives at the intersection between these various frameworks.
Several important issues from evolutionary biology will be addressed during the week:

(1) evolutionary rescue: the process that occurs when a population, initially declining because of exposure to an environment outside its ecological niche, avoids extinction via genetic adaptation
(2) the dynamics of adaptation in time-varying environments
(3) the role of space in the dynamics of adaptation
(4) the role of age structure
(5) the role of evolution in epidemiology and invasion biology.

Mathematical approaches will include nonlocal and nonlinear parabolic PDEs, integro-differential equations, free-boundary equations, transport equations satisfied by generating functions of some stochastic processes, discrete stochastic processes including birth-death processes and branching processes, diffusion processes, stochastic PDEs, and piecewise deterministic Markov processes.

Au cours des dernières années, plusieurs approches de modélisation ont été proposées pour étudier des questions de biologie évolutionniste quantitative. Ces approches ont été développées par des mathématiciens spécialisés dans l’analyse des EDP, des mathématiciens spécialisés en probabilité et des biologistes de l’évolution. L’objectif de cette semaine est de réunir des chercheurs de ces trois horizons différents, afin de faire le point sur les approches existantes et de travailler sur de nouvelles perspectives à l’intersection de ces différents cadres.

Plusieurs questions importantes liées à la biologie de l’évolution seront abordées au cours de la semaine :
(1) sauvetage évolutif : le processus qui se produit lorsqu’une population, initialement en déclin en raison d’une exposition à un environnement extérieur à sa niche écologique, évite son extinction par adaptation génétique
(2) la dynamique de l’adaptation dans des environnements variant dans le temps
(3) le rôle de l’espace dans la dynamique de l’adaptation
(4) le rôle de la structure par âge
(5) le rôle de l’évolution en épidémiologie et en biologie de l’invasion.

Les approches mathématiques comprendront les EDP paraboliques non locales et non linéaires, les équations paraboliques intégro-différentielles, les équations aux limites libres, les équations de transport satisfaites en générant des fonctions de certains processus stochastiques, les processus stochastiques discrets incluant les processus naissance-mort et les processus de ramification, les processus de diffusion, les EDP stochastiques, les processus de Markov déterministes par morceaux.

Speaker

Matthieu Alfaro (CNRS, Université de Montpellier)  Evolutionary rescue, a mathematical analysis
Nick Barton (Institute of Science and Technology, Austria)   Applying the infinitesimal model
Sylvain Billiard (CNRS, Université de Lille)   Inference with selection, varying population size and evolving population structure: Application of ABC to a forward-backward coalescent process with interactions
Jean Clairambault (Sorbonne Université & INRIA Paris)   An evolutionary view of cancer with perspectives in therapeutics, taking drug resistance into account
Loren Coquille (Université Grenoble Alpes)
Troy Day (Departments of Mathematics & Biology, Queen’s University)   What is evolvability?
Alison M. Etheridge (Oxford University)   Applying the infinitesimal model
Raphaël Forien (INRA Avignon)   Isolation by distance patterns arising from short range and long range dispersal
Coralie Fritsch (INRIA Nancy)   Identifying conversion efficiency as a key mechanism underlying foodwebs adaptive evolution: A step forward, or backward?
Sylvain Gandon (CNRS, Université de Montpellier)   Evolutionary epidemiology of drug resistance in space
Jimmy Garnier (LAMA, CNRS, Université de Savoie Mont-Blanc)   Evolutionary dynamics of populations : nonlocal PDEs approaches
Frédéric Hamelin (INRA Rennes)   Coinfections by noninteracting pathogens are not independent and require new tests of interaction
Yong Jung Kim (KAIST)   Asymmetric dispersal and evolutional selection in a heterogeneous environment
Marek Kimmel (Rice University)   Statistical Inference of growth and mutation patterns of tumors based on genomic data​
Stephen Krone (University of Idaho)   Spatial structure undermines parasite suppression by gene drive cargo​
Hélène Leman (Ens Lyon)   Cooperative behavior between soil bacteria​
Guillaume Martin (ISEM, CNRS, Montpellier)   Evolutionary Rescue over a phenotype fitness landscape: across the mutation rate spectrum
Sylvie Méléard (CMAP, CNRS-École Polytechnique)   Adaptation to a gradual environment – Research of lineages
Sepideh Mirrahimi (CNRS, Université Toulouse III)   Selection and mutation in a shifting and fluctuating environment
Julien Papaïx (INRA).  Emmerging spatial structures drive pathogen evolution in coevolving plant-pathogen systems​
Benoît Perthame (Sorbonne Université & Académie des Sciences)   Effective fitness and evolution in structured population models
Cornelia Pokalyuk (Goethe University Frankfurt)   Haldane’s formula in Cannings models with moderate selection
Stephen Proulx (University of California Santa Barbara)   Evolution of maternal effects in discrete random environments
Ophélie Ronce (ISEM, CNRS, Montpellier)   Evolutionary tipping-points in a shifting climate
Sebastian Schreiber (University of California, Davis)
Mircea Sofonea (Université de Montpellier)   Adaptive dynamics at the host interface applied to virulence and multipartitism evolution
Viet Chi Tran (Laboratoire Paul Painlevé, Université de Lille)  Evolving genealogies for branching populations under selection and competition
Hildegard Uecker (MPI for Evolutionary Biology)
Amandine Véber (Ecole Polytechnique)  The infinitesimal model of phenotypic evolution – a microscopic approach

Emplacement
CIRM, Luminy

Catégories



Retour en haut