Ondes progressives et phénomènes de propagation pour des équations paraboliques dépendant du temps

Weiwei Ding
I2M, Aix-Marseille Université

Date(s) : 03/11/2014   iCal
0 h 00 min

Soutenance de thèse

Sous la direction de François Hamel et de Xing Liang.

Le président du jury était Xuefeng Wang.

Le jury était composé de Wan-Tong Li, Jérôme Coville.

Les rapporteurs étaient Yuan Lou, Claude-Michel Brauner.

Cette thèse concerne les phénomènes de propagation de certaines équations d’évolution dans des habitats périodiques. Dans la première partie, nous étudions les phénomènes d’expansion de certaines équations d’intégro-différence spatialement périodiques. Tout d’abord, nous établissons une théorie générale sur l’existence des vitesses de propagation pour des systèmes d’évolution noncompacts, sous l’hypothèse que les systèmes linéarisés ont des valeurs propres principales. Ensuite, nous introduisons la notion d’irréductibilité uniforme des mesures de Radon finies sur le cercle. On démontre que tout opérateur de convolution généré par une telle mesure admet une valeur propre principale. Enfin, nous prouvons l’existence de vitesses de propagation pour certains équations d’intégro-différence avec des noyaux de dispersion uniformément irréductibles. Dans la deuxième partie, nous étudions les phénomènes de propagation de front pour des équations de réaction-diffusion spatialement périodiques avec des non-linéarités bistables. Nous nous concentrons d’abord sur les solutions de type fronts pulsatoires. Sous diverses hypothèses, il est prouvé que les fronts pulsatoires existent lorsque la période spatiale est petite ou grande. Nous caractérisons aussi le signe des vitesses et nous montrons la stabilité exponentielle globale des fronts pulsatoires de vitesse non nulle. Nous étudions ensuite les solutions de type fronts de transition. Sous des hypothèses convenables, on prouve que les fronts de transition se ramènent aux fronts pulsatoires avec une vitesse non nulle. Mais nous montrons aussi l’existence de nouveaux types de fronts de transition qui ne sont pas des fronts pulsatoires.

This dissertation is concerned with propagation phenomena of some evolution equations in periodic habitats. The main results consist of the following two parts. In the first part, we investigate the spatial spreading phenomena of some spatially periodic integro-difference equations. Firstly, we establish a general theory on the existence of spreading speeds for noncompact evolution systems, under the hypothesis that the linearized systems have principal eigenvalues. Secondly, we introduce the notion of uniform irreducibility for finite Radon measures on the circle. It is shown that, any generalized convolution operator generated by such a measure admits a principal eigenvalue. Finally, applying the above general theories, we prove the existence of spreading speeds for some integro-difference equations with uniformly irreducible dispersal kernels. In the second part, we study the front propagation phenomena of spatially periodic reaction-diffusion equations with bistable nonlinearities. Firstly, we focus on the propagation solutions in the class of pulsating fronts. It is proved that, under various assumptions on the reaction terms, pulsating fronts exist when the spatial period is small or large. We also characterize the sign of the front speeds and we show the global exponential stability of the pulsating fronts with nonzero speed. Secondly, we investigate the propagation solutions in the larger class of transition fronts. It is shown that, under suitable assumptions, transition fronts are reduced to pulsating fronts with nonzero speed. But we also prove the existence of new types of transition fronts which are not pulsating fronts.


Lien : theses.fr

Catégories



Retour en haut