Propagation du front d’onde de Gabor pour des équations de Schrodinger avec des hamiltoniens quadratiques

Carte non disponible

Date/heure
Date(s) - 25/10/2016
11 h 00 min - 12 h 00 min

Catégories


On étudie la propagation du front d’onde de Gabor pour des équations de Schrödinger dont l’hamiltonien est donné par la quantification de Weyl d’une forme quadratique dont la partie imaginaire est négative. On établit une inclusion entre le front d’onde de Gabor de la solution et celle de la donnée initiale qui montre que les singularités de Gabor se propagent uniquement dans l’espace singulier associé à l’opérateur quadratique, et que si l’intersection de cet espace singulier avec le front d’onde de la donnée initiale est vide alors la solution appartient à l’espace de Schwartz pour tout temps strictement positif.

https://perso.univ-rennes1.fr/karel.pravda-starov/

Olivier CHABROL
Posts created 14

Articles similaires

Commencez à saisir votre recherche ci-dessus et pressez Entrée pour rechercher. ESC pour annuler.

Retour en haut
Secured By miniOrange