S. Barbieri (LATP): Optimal Time-Frequency Bases for EEG Signal Classification in the Context of BCI.

Carte non disponible

Date(s) - 27/06/2013
14 h 00 min - 15 h 00 min

Catégories Pas de Catégories

Optimal Time-Frequency Bases for EEG Signal Classification in the Context of BCI. by Sebastiano Barbieri\n\nAbstract:\nWe consider the problem of classifying multi-sensor signals\, more\nprecisely EEG signals in the context of Brain Computer Interfaces (BCI)\, by selection of\ntime-frequency features. The features are determined among local cosine bases (MDCT)\nby a “best basis” type algorithm adapted to the classification context.\n\nIn the BCI domain\, or more generally in neuroscience\, many classification algorithms\nare based upon automatic approaches (artificial neural networks\, SVM\, …) which do not\nallow a simple interpretation of the features. In the talk we propose an approach which allows such interpretation\, since the features are determined in the form of time-frequency atoms\, similarly to classic analyses of EEG signals which involve specific frequency\nbands and time intervals.\n\nThe proposed algorithm generalizes the best discriminant basis algorithm\nby Saito\, employing pairwise comparisons between the signals belonging to two\nclasses of data. Results on artificial data show that the method is able to determine\nsimulated differences between signals. Results on real data are competitive with state of\nthe art classification algorithms and more easily interpretable.

Posts created 14

Articles similaires

Commencez à saisir votre recherche ci-dessus et pressez Entrée pour rechercher. ESC pour annuler.

Retour en haut
Secured By miniOrange