Sur les billards polynomialement intégrables dans les surfaces à courbure constante

Carte non disponible

Date/heure
Date(s) - 21/12/2018
11 h 00 min - 12 h 00 min

Catégories Pas de Catégories


La célèbre Conjecture de Birkhoff concerne un billard convexe planaire à frontière lisse. Rappelons, qu’une caustique d’un billard est une courbe C dont toute droite tangente se reflète de la frontière du billard en une droite aussi tangente à C. Un billard s’appelle intégrable au sens de Birkhoff, si un voisinage intérieur de sa frontière est feuilleté par des caustiques fermées. La Conjecture de Birkhoff affirme, que tout billard planaire intégrable au sens de Birkhoff est une ellipse. Récemment Vadim Kaloshin et Alfonso Sorrentino en ont démontré la version locale: toute déformation intégrable d’une ellipse est une ellipse. L’intégrabilité d’un billard au sens de Birkhoff est équivalente à l’intégrabilité au sens de Liouville du flot de billard: l’existence d’une intégrale première indépendante avec l’intégrale triviale, le module de la vitesse (au voisinage du fibré tangent unitaire de la frontière). La version algébrique de la Conjecture de Birkhoff, qui a été d’abord étudiée par Sergei Bolotin, concerne les billards polynomialement intégrables, dont le flot admet une intégrale première polynomiale en la vitesse qui est non constante le long de l’hypersurface de niveau unitaire du module de la vitesse.

Dans cet exposé, nous présenterons un survol court de la Conjecture de Birkhoff et la solution complète de sa version algébrique. Nous démontrons, que tout billard planaire polynomialement intégrable à frontière C2 lisse connexe non linéaire est une ellipse. Nous classifions les billards polynomialement intégrables à frontière lisse par morceaux sur toute surface à courbure constante: plan, sphère, le plan hyperbolique.
Ce sont des résultats en commun avec Misha Bialy et Andrey Mironov.
http://www.researchgate.net/profile/Alexey_Glutsyuk

Olivier CHABROL
Posts created 14

Articles similaires

Commencez à saisir votre recherche ci-dessus et pressez Entrée pour rechercher. ESC pour annuler.

Retour en haut
Secured By miniOrange