Semiclassical analysis of the Neumann Laplacian with constant magnetic field in three dimensions

Frédéric Hérau
Université de Nantes

Date(s) : 17/05/2022   iCal
11 h 00 min - 12 h 00 min

We present some results on the spectral analysis of the semiclassical Neumann magnetic Laplacian on a smooth bounded domain in dimension three. When the magnetic field is constant and in the semiclassical limit, we establish a four-term asymptotic expansion of the low-lying eigenvalues, involving a geometric quantity along the apparent contour of the domain in the direction of the field. In particular, we prove that they are simple. This is a joint work with N. Raymond.

Site Nord, CMI, Salle de Séminaire R164 (1er étage)


Retour en haut 

Secured By miniOrange