Théorèmes maximaux de type Hardy-Littlewood avec bornes indépendantes de la dimension

Luc Deléaval
LAMA, Université Gustave Eiffel, Champs-sur-Marne

Date(s) : 22/01/2018   iCal
10 h 00 min - 11 h 00 min

In this talk, Fefferman-Stein inequalities in 𝐿𝑝(𝑑;𝑞) with bounds independent of the dimension 𝑑 are proved, for all 1<𝑝,𝑞<+. This result generalizes in a vector-valued setting the famous one by Stein for the standard Hardy-Littlewood maximal operator. We then extend our result by replacing 𝑞 with an arbitrary UMD Banach lattice. Finally, we prove similar dimensionless inequalities in the setting of the Grushin operators.

Hardy-Littlewood maximal theorems with dimension independent bounds

Dimension free bounds for the vector-valued Hardy-Littlewood maximal operator


Retour en haut