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ABSTRACTWe present here a number of test cases and meshes which veagaedeto form
a benchmark for finite volume schemes. We address a two-siionah anisotropic diffusion
problem, which is discretized on general, possibly nonmoning meshes. In all cases, the
diffusion tensor is taken to be anisotropic, and at timesfogfenous and/or discontinuous.
The meshes are either triangular or quadrangular. The rssulhich are expected from the
participants to the benchmark range from the number of unkis the errors on the fluxes or
the minimum and maximum values, to the order of convergemoen available).
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1. Introduction

The aim of this benchmark is to provide a number of test casesder to com-
pare the properties (convergence, robustness...) ofrexidiscretization schemes for
anisotropic diffusion problems using general grids.

In all test cases except test 8, the domaiis the unit square. The boundary of the
domain is divided int@) = I'p U I'y where Dirichlet (resp. Neumann) boundary
conditions are given oh , (resp. onl'y).

The considered diffusion problem is formulated as:

-V (KVu) = fonQ,
u=uonlp, (1)

KVu-n=gonly,



whereK : Q — IR?*? s the diffusion (or permeability) tensof, the source term,
u andg the Dirichlet and Neumann boundary conditions, andenotes the outward
unit normal vector td’ .

For each test case, we propose some meshes which will beardbd tomparison
between the various schemes. The corresponding data fegvan in the different
formats which are explained in the README file of the web sit&r any related
question to these meshes or formats please get in touch wilobthe organizers
(herbin@cmi.univ-mrs.fr, fhubert@cmi.univ-mrs.fr).

The scheme which is used should be described in the intrimthuct the paper,
along with the known (mathematically proven) results ofvagence, stability, or
error estimates.

In order to facilitate the programming, some FORTRAN suliras giving the
source terms, the diffusion tensors, the exact solutionistaeir derivatives (when
available), are given in the fileources . £90 available on this web site.

One may submit a benchmark paper even if only a partial nuoftiest cases and
meshes are performed. The filemplate.tex should be used for submission and
display of the numerical results.

Please make sure to register on the web site for the benchimarld intend to
participate, since all updates will be sent to the benchmaaiing list produced by
the registrations.

2. The tests

Test 1: Mild anisotropy

A homogeneous anisotrotic tensor is considered:
1.5 0.5
K= ( 0.5 1.5 > ’

— Test 1.1:mesh1 (triangular mesh)mesh4 (distorted quadrangular mesh) This
first solution is very regular, and is tested first on a "regutdangular mesh and
then on a distorted quadrangular mesh. On this latter meshyish to see whether
oscillations appear and whether the approximate solugamains within the bounds
of the exact solution.

u(z,y) = 162(1 — 2)y(1 —y), f = -V - (KVu)



— Test 1.2:mesh1 (triangular mesh)pesh3 (locally refined nonconforming rect-
angular mesh) This solution increases at the origin, anetbee we use an noncon-
forming rectangular mesh to see how the schemes behaves.

u(@,y) =sin (1 -2)(1-y) + (1 -2)°(L —y)* f =~V (KVu)
FD = 8Q,PN - @,

u = u|aQ

Test 2: Numerical locking [BAB 92, MAN 07]

10
<=(05)
— Meshes mesh1 (triangular mesh)
— Values of the parametér: 10°, 10°.

u(x,y) = sin(2rz)e 2"V f = V. (KVu)
I'p=0,Ty =09,
g = (KVu-n)|sq,

/ud:r:O.
Q

Note that the maximum and the minimum of the solution aretkxtan the bound-
ary, and are more difficult to obtain with the Neumann boupdanditions imposed
here. Sincd is large, the solution is almost constant in theariable.

Test 3: Oblique flow

This test case represents a flow with boundary conditions gwat the pressure
driven flow 'would like’ to go from vertex (0,0) to vertex (1),lbut is impeded by a
heterogeneous anisotropic tensor with high permeabiiity direction at 40 degrees
from the horizontal and low permeability in the orthogoniaédtion. This test case is
inspired by a talk given by I. Aavatsmark in Paris in Decen#i#6 at GDR MOMAS.
After the first publication of this benchmark on the web, IvAsmark told us that in
fact, there are more severe test cases for monotony, whigeierously handed out
to us. They are described in Tests 8 and 9 below.

1 0 _
K:Rg(o 5>R91,

whereR; is the rotation of anglé = 40 degrees and = 10~3.



The shape of the solution is depicted in Figure 1; it was olethby a computation
by a “hybrid finite volume scheme” (see [EYM 07]) on a fine grid.

Figure 1. Approximate solution on a fine grid for Test 3, oblique flow

We wish to see how the schemes respect the maximum printlplece the results
should show the maximum and miminum values of the approxérsalution. Since
the exact solution is not known, it is difficult to measure grecision of the scheme
with respect to the values of the approximate solution; bée outward fluxes should
also be given to compare the various schemes, along with ongpatations of the
energy given by the discrete counterpart of the formulae:

E = / KVu - Vudz, Es = KVu-nudz (2)
Q o0

Note thatZ; may only be computed for those methods which include a dsg-
dient while E5 can be computed with the boundary outward normal fluxes @&@vgn
thoughFE; and E5 should converge to the same value on fine grids, there coudd be
noticeable difference betwedn and E5 on the coarsest meshes, and the authors are
encouraged to comment on this difference.

— Meshesmesh2 (uniform rectangular mesh) and a reference mesh.
I'p=00,Tny=0, f=0,

u is continuous and piecewise linear @2 and such that

1 on ((0,.2) x {0.}U{0.} x (0,.2)
)0 on (810 x {1 U{L) x (8,1
WEY) =Y L on ((3.1) x {0} U {0} x (3,1.)

Toon ((0..7) x {1} U {1} x (0.,0.7)



Test 4: Vertical fault

The medium considered here is a pile of anisotropic layeth wifault in the
middle, which leads to a discontinuity of the layerscat .5. Each geological layer
is meshed with one layer of discretization cells only. A Ehifet boundary condition
is imposed.

The domain2? may be decomposed & = Q; U Q9, with Q5 = O\ Q4, with
0 =0{uQr, and

4
Q% = (0.,;.5] x (U [.05 4 2k x .1;.05 + (2k + 1) x .1)) ,
k=0

4
Q) = (.5;1) x (U [2k x .1; (2k + 1) x .1)) .

k=0

It is described in Figure 2 whefe, is in black and?; in white.

(Ovn | l I

(0,0) (1,0

Figure 2. The computational domain and approximate solution on a fifte(¢20 x
320) for Test 4, vertical fault

As in the case of Test 3, the exact solution is not known, aacKpected results

are the same as those of test 3, namely minimum and maximwmaesautward fluxes
and the energieB; andEs.

The diffusion tensoK is anisotropic and heterogenous, and is given by:
a 102
vy e | 5] ) e
K= ( ) , with
0 5 o 102
/8 - 1073 on QQ



— Meshes:mesh5 (nonconforming rectangular mesh) see Figure 8, the square
mesh20 x 20 denoted bymesh5,.., and a reference mesh, for instance the square
mesh320 x 320 calledmesh5,.. .

— Boundary conditions:

I'p=00.Tny=0, f=0,
u(z,y)=1—=x

Test 5: Heterogeneous rotating anisotropy

This test is inspired from [AND 07, LEP 05], and induces nuicedrlocking for
some schemes.

K 1 107322 + 92 (1073 — 1)zy
T @242 \ (107 =Dy 22 +107%2 )7

u(z,y) =sinmxsinmy, f = -V - (KVu),

— Meshes mesh2 (uniform rectangular meshes)
— Test Boundary conditions:

{FDzaﬁ,FN:(Z),

tu(x,y) = sinmrsinmy

Test 6: Oblique drain

This test case represents a situation which is encountenaatierground flow en-
gineering where an oblique drain consisting in a very pebigekayer concentrates
most part of the flow; this drain is meshed with only one layfediscretization cells.
in the case of a pressure gradient driven transport, as déscribed in reservoir en-
gineering, it seems important that the discretizatiorsa@insist in only one homone-
neous material: numerical experiments show that othertivessolution may be badly
approximated. Here we consider the steady case, but wisérify that the outward
fluxes are as close as possible to the exact values for theasieshsidered here, both
for the conforming and nonconforming meshes.

The domain is composed of 3 subdomains:
Ql = {(xay) € Qa¢1(x7y) < 0}7

QQ = {(:E,y) € Q?¢1(x7y) > 0,(;52(.%,34) < 0}7
QB = {({E,y) € Q?¢2(x7y) > 0}7



with
{ o1 (z,y) =y — 6(z — .5) — 475,

p2(z,y) = ¢1(x,y) — 0.05.
We take the slope of the drain= 0.2 and define the exact solution and the source
term by:
u(r,y) = —x — oy, onQ, f=-V(KVu),
where the permeability tenst is such that its principal axes are parallel and perpen-

dicular to the drain:
. a 0 —1
K =Ry < 0 3 ) R,

with 6 such thaty = tand and :
2
( g ): ( 10171 ),onmUQg.

— Meshes mesh6, mesh7
— Boundary conditions:

I'p =00,y =0,
u(zr,y) = —x — oy

Test 7: Oblique barrier

This test case is similar to the Test 6, except that we now teedveal with a barrier,
and the aim is that the scheme should respect this barrieglaasithe outward fluxes.

We take the same geometry as test 6 above, with the slope dfdahe = 0.2.
We take the exact solution to be
— ¢1(z,y) onQy,
u(z,y) =4 — é1(z,y)/107% onQy,
— ¢o(x,y) — 0.05/1072 on g,
andf = —V-(KVu), where the permeability tenséf is heterogeneous and isotropic:

a 0
<=(5 o),

1onQy,

with :

a=1< 1072 0onQy,

10onQs.
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Figure 3. Parallelogram-shaped domai showing the distance& and Y and the
angled.

— Meshes mesh6
— Boundary conditions:

I'p=00Tn=0,
— ¢1(x, )onaQﬁaﬂl,

(,y
a(z,y) =< — é1(x,y)/10720n0Q N 0Ny,
— ¢o(z,9) — 0.05/107% 0N I N IN3.

Test 8: Perturbed parallelograms [AAV 07]

This test case was given to us by I. Aavatsmark [AAV 07], andéant to test the
schemes for the violation of the maximum principle withie thomain. The domain
Q is parallelogram shaped, as shown in figure 3. The param&tergn in figure 3
areX =1,Y = 1/30andf = 30°. The medium is homogeneous and isotropic with
K = Id.

— Mesh:mesh8 (perturbed parallelogram mesh) see Figure 10.
— Boundary conditions and right hand side:

I'p=090,Tn =0, f=0inall cells except cel(6, 6) where/ f(z)dx = 1.
cell(6,6)

a(zr,y) = 00nos.

Note that the solution: of this problem should be a function with a maximum in
cell (6,6), decreasing smoothly to zero towards the boundary, $hows internal
oscillations or ifu < 0, Hopf’s first lemma is violated.

Note that cell(4, j) is numbered by + 11(j — 1) in the dataneshs.



Test 9: Anisotropy and wells [AAV 07]

Here, Q) is again the square unit domaih = (0,1) x (0,1). The medium is
homogeneous and anisotropic with

1 0

K = M(-0) [O 10_3} M),  M(9) = {

cosf  sin 9} 7 3)

—sinf cos6
wheref = 67.5°.

— Mesh:mesh9, the grid is a square uniform grid withl x 11 cells (Figure 11).
— Boundary conditions and right hand side:

- The source density is zero in all cells.

- The pressure is fixed in two cells, approximating a sink arsb@arce with
fixed pressure:

u=0 incell(4,6),

: (4)
u=1 incell(8,6).
- Homogeneous Neumann conditions apply at the outer boyndar
—KVu-n=0 onof. (5)

The solutionu of this problem should satisfy € [0,1]. If « has extrema on the
no-flow boundary with: ¢ [0, 1], Hopf’s second lemma is violated.

Note that cell4, j) is numbered by + 11(j — 1) in the datanesh9.

3. Expected results

When refined the meshes are numbered 1 to ngrid, from coarsest to finest.
The structure of the expected results is given in thetfdeplate.tex. For each
value ofi, one should provide:

For all runs:

—nunkw number of unknowns
—nnmat number of nonzero terms in the matrix
—sumflux the discrete flux balance, that is:

sumflux= fluxO+flux1+fluyO+fluyl-sumf,

whereflux0, fluxl, fluy0, fluyl are the outward fluxes at the boundaries
0,z=1,y=0,y =1, forexample

f1ux0 is an approximation of- / KVu-nds
x=0



andsumf = ), |K|f(zx) wherexrx denotes some point (which should be pre-
cised) of the control volum&’.

—umin: value of the minimum of the approximate solution.
—umax: vValue of the maximum of the approximate solution.

When the analytical solution is known and the mesh refined:

Let us denote by the exact solution, by the mesh and by = (ux)ke7 the
piecewise constant approximate solution.

—erl2, relative discretd.? norm of the erroer12 where:

S K (ulex) - ure)?

KeT

Y |Klu(ex)?

KeT

erl2 =

wherez denotes some point (which should be precised) of the comtlaime K,
(or a variant of such a norm, to be precised).

—ergrad relative L2 norm of the error on the gradient, if available (give the defi-
nition of the discrete gradient)

—ratiol2: fori > 2,

,, In(er12(i)) —In(erl2(i — 1))
In(nunkw(i)) — In(nunkw(i — 1))

ratiol2(i) =

—ratiograd, fori > 2,

In(ergrad(i)) — In(ergrad(i — 1))

ratiograd(i) = - In(nunkw(i)) — In(nunkw(i — 1)) °

—erflx0,erflx1l, erfly0,erflyl relative error betweerflux0, fluxi,
fluy0, fluy1 and the corresponding flux of the exact solution:

flux0+ [,_KVu-n
Joco KVu-n

erflx0 =

(except for the fluxes at y=0 and y=1 for case test 2 -Numelaciing- because these
are zero,give the value of the approximate fluxes only ind¢hge).

—erflm L°° norm of the error on the meanvalue of the flux through the edfes
the mesh, if available (give the definition of numerical fli&Vu - n)7)

erflm = max { ’ ﬁ / (KVu-n— (KVu-n)7)
o g

, o edges off}

10



—ocv12 order of convergence of the method in thé norm of the solution as
defined byexr12 with respect to the mesh size:

In(erl2(imax)) — In(erl2(imax — 1))
In(h(imax)) — In(h(imax — 1))

ocvl2 =

whereh is the maximum of the diameter of the control volume

—ocvgrad12 order of convergence of the method in thé norm of the gradient
as defined bygrgradl2 with respect to the mesh size:

In(ergrad(imax)) — In(ergrad(imax — 1))
In(h(imax)) — In(h(imax — 1))

ocvgrad =

For tests 3, 4, 8,9the exact solution is not known, the maximum principle drel t
overall precision of the scheme can be tested by computing:

—umin: value of the minimum of the approximate solution.

—umax: value of the maximum of the approximate solution.

—flux0, fluxl, fluy0, fluyl outward normal fluxes to the boundaries-
0,z =1,y =0andy = 1 (useless in case of test 9).

The same values should be computed on a reference fine grid splkee able to
compare the results.

For tests 3, 4 sincef = 0, we can compute :

—enerl, ener2:values of the discrete computations of the energies giyehd
formulae (2) (if a discrete gradient is available in the cafseéner1).

—eren: relative error betweeaner1, ener?2:

|enerl — ener?2|

eren = :
max(enerl, ener?2)

4. The meshes

Figures of the meshes are given after the references. Wedertwo different
formats for the meshes:

*.typl and *.typ2, which are described in the filREADME in the directory
Meshes.

The size steps of the meshes are given in the following table:

11



i 1 2 3 4 5 6 7

meshl| 2.50E-01 1.25E-01 6.25E-02 3.12E-02 1.56E-02 7.81E-031EB3@®3
mesh2 | 3.54E-01 1.77E-01 8.84E-02 4.42E-02 2.21E-02 1.10E-022E03
mesh3| 3.54E-01 1.77E-01 8.84E-02 4.42E-02 2.21E-02

mesh 4| 3.29E-01 1.70E-01

mesh 5| 1.41E-01

mesh6| 1.25E-01

mesh7| 1.25E-01

mesh8| 1.24E-01

mesh9| 1.29E-01

Please use the same format as above when entering yoursrastlte tables
of template.tex, that is the format:isign integer dot integer ingeger E
sign integer integer. This format is given for instance by the FORTRAN for-
matEs9. 2

5. References

[AAV 07] A AVATSMARK I., “Tests cases for violation of monotonicity”, Commurtica to
FVCADS organizers, 2007.

[AND 07] ANDREIANOV B., BoYERF., HUBERTF., “Discrete duality finite volume schemes
for Leray-Lions-type elliptic problems on general 2D mesheNumer. Methods Partial
Differential Equationsvol. 23, num. 1, 2007, p. 145-195.

[BAB 92] BABUSKA I., SURI M., “On locking and robustness in the finite element method”,
SIAM J. Numer. Analvol. 29, num. 5, 1992, p. 1261-1293, Society for Industaizd
Applied Mathematics.

[EYM 07] EYMARD R., GALLOUET T., HERBIN R., “A new finite volume scheme for
anisotropic diffusion problems on general grids: conveogeanalysis.”, C. R., Math.,
Acad. Sci. Parisvol. 344, num. 6, 2007, p. 403-406.

[LEP 05] LE PoTIER C., “Schéma volumes finis pour des opérateurs de diffusicierfeent
anisotropes sur des maillages non structuré€’, R. Math. Acad. Sci. Parissol. 340,
num. 12, 2005, p. 921-926.

[MAN 07] M ANzINI G., PUTTI M., “Mesh locking effects in the finite volume solution of 2-
D anisotropic diffusion equationsJ. Comput. Physvol. 220, num. 2, 2007, p. 751-771,
Academic Press Professional, Inc.

12



Figure 4. Triangular mesh with acute angles: mesheshi_1 (left) andmesh1_4
(right)

Figure 5. Uniform rectangular mesh: meshessh2_1 (left) andmesh2_4 (right)

13



e

LMY
\\\\\
ALY

AN
\\\\\\\\\\\\\\\\\\\\\\\

,,,,,,,,,,,,,,,,,,,,,,,

_______________________

_______________________

Figure 6. Locally refined non conforming rectangular mesh: mesteh3_1 (left)

andmesh3_4 (right)

Figure 7. Conforming distorted quadrangular mesh: meshesh4_1 (left) and

mesh4_2 (right)
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Figure 8. Non conforming regular rectangular meshsh5b
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Figure 9. Coarse oblique meshieshé6 (Left).Fine oblique mesh for the oblique bar-
rier and drain testsmesh7 (Right)

Figure 10. Perturbed parallelogram grichesh8 with 11 x 11 cells. To visualize the
grid, on this picture the height is 3 times the real heighth# grid described in the
test case.

15



Figure 11. square uniform gricdhesh9 with 11 x 11 cells.
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