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ABSTRACT.We present here a number of test cases and meshes which were designed to form
a benchmark for finite volume schemes. We address a two-dimensional anisotropic diffusion
problem, which is discretized on general, possibly nonconforming meshes. In all cases, the
diffusion tensor is taken to be anisotropic, and at times heterogenous and/or discontinuous.
The meshes are either triangular or quadrangular. The results which are expected from the
participants to the benchmark range from the number of unknowns, the errors on the fluxes or
the minimum and maximum values, to the order of convergence (when available).
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1. Introduction

The aim of this benchmark is to provide a number of test cases in order to com-
pare the properties (convergence, robustness...) of existing discretization schemes for
anisotropic diffusion problems using general grids.

In all test cases except test 8, the domainΩ is the unit square. The boundary of the
domain is divided into∂Ω = ΓD ∪ ΓN where Dirichlet (resp. Neumann) boundary
conditions are given onΓD (resp. onΓN ).

The considered diffusion problem is formulated as:















−∇ · (K∇u) = f onΩ,

u = ū onΓD,

K∇u · n = g onΓN ,

(1)



whereK : Ω → IR2×2 is the diffusion (or permeability) tensor,f the source term,
ū andg the Dirichlet and Neumann boundary conditions, andn denotes the outward
unit normal vector toΓN .

For each test case, we propose some meshes which will be used for the comparison
between the various schemes. The corresponding data files are given in the different
formats which are explained in the README file of the web site.For any related
question to these meshes or formats please get in touch with one of the organizers
(herbin�
mi.univ-mrs.fr,fhubert�
mi.univ-mrs.fr).

The scheme which is used should be described in the introduction of the paper,
along with the known (mathematically proven) results of convergence, stability, or
error estimates.

In order to facilitate the programming, some FORTRAN subroutines giving the
source terms, the diffusion tensors, the exact solutions and their derivatives (when
available), are given in the filesour
es.f90 available on this web site.

One may submit a benchmark paper even if only a partial numberof test cases and
meshes are performed. The filetemplate.tex should be used for submission and
display of the numerical results.

Please make sure to register on the web site for the benchmarkif you intend to
participate, since all updates will be sent to the benchmarkmailing list produced by
the registrations.

2. The tests

Test 1: Mild anisotropy

A homogeneous anisotrotic tensor is considered:

K =

(

1.5 0.5
0.5 1.5

)

,

– Test 1.1:mesh1 (triangular mesh),mesh4 (distorted quadrangular mesh) This
first solution is very regular, and is tested first on a ”regular" triangular mesh and
then on a distorted quadrangular mesh. On this latter mesh, we wish to see whether
oscillations appear and whether the approximate solution remains within the bounds
of the exact solution.















u(x, y) = 16x(1 − x)y(1 − y), f = −∇ · (K∇u)

ΓD = ∂Ω, ΓN = ∅,
ū = u|∂Ω
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– Test 1.2:mesh1 (triangular mesh),mesh3 (locally refined nonconforming rect-
angular mesh) This solution increases at the origin, and therefore we use an noncon-
forming rectangular mesh to see how the schemes behaves.















u(x, y) = sin ((1 − x)(1 − y)) + (1 − x)3(1 − y)2, f = −∇ · (K∇u)

ΓD = ∂Ω, ΓN = ∅,
ū = u|∂Ω

Test 2: Numerical locking [BAB 92, MAN 07]

K =

(

1 0
0 δ

)

,

– Meshes :mesh1 (triangular mesh)

– Values of the parameterδ : 105, 106.



































u(x, y) = sin(2πx)e−2π
√

1/δy, f = −∇ · (K∇u)

ΓD = ∅, ΓN = ∂Ω,

g = (K∇u · n)|∂Ω,
∫

Ω

u dx = 0.

Note that the maximum and the minimum of the solution are located on the bound-
ary, and are more difficult to obtain with the Neumann boundary conditions imposed
here. Sinceδ is large, the solution is almost constant in they variable.

Test 3: Oblique flow

This test case represents a flow with boundary conditions such that the pressure
driven flow ’would like’ to go from vertex (0,0) to vertex (1,1), but is impeded by a
heterogeneous anisotropic tensor with high permeability in a direction at 40 degrees
from the horizontal and low permeability in the orthogonal direction. This test case is
inspired by a talk given by I. Aavatsmark in Paris in December2006 at GDR MOMAS.
After the first publication of this benchmark on the web, I. Aavatsmark told us that in
fact, there are more severe test cases for monotony, which hegenerously handed out
to us. They are described in Tests 8 and 9 below.

K = Rθ

(

1 0
0 δ

)

R−1
θ ,

whereRθ is the rotation of angleθ = 40 degrees andδ = 10−3.
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The shape of the solution is depicted in Figure 1; it was obtained by a computation
by a “hybrid finite volume scheme" (see [EYM 07]) on a fine grid.

Figure 1. Approximate solution on a fine grid for Test 3, oblique flow

We wish to see how the schemes respect the maximum principle.Hence the results
should show the maximum and miminum values of the approximate solution. Since
the exact solution is not known, it is difficult to measure theprecision of the scheme
with respect to the values of the approximate solution; hence the outward fluxes should
also be given to compare the various schemes, along with two computations of the
energy given by the discrete counterpart of the formulae:

E1 =

∫

Ω

K∇u · ∇udx, E2 =

∫

∂Ω

K∇u · nudx (2)

Note thatE1 may only be computed for those methods which include a discrete gra-
dient whileE2 can be computed with the boundary outward normal fluxes only.Even
thoughE1 andE2 should converge to the same value on fine grids, there could bea
noticeable difference betweenE1 andE2 on the coarsest meshes, and the authors are
encouraged to comment on this difference.

– Meshes:mesh2 (uniform rectangular mesh) and a reference mesh.






































ΓD = ∂Ω, ΓN = ∅, f = 0,

ū is continuous and piecewise linear on∂Ω and such that

ū(x, y) =















1 on ((0, .2) × {0.} ∪ {0.} × (0, .2)
0 on ((.8, 1.) × {1.} ∪ {1.} × (.8, 1.)
1
2 on ((.3, 1.) × {0} ∪ {0} × (.3, 1.)
1
2 on ((0., .7) × {1.} ∪ {1.} × (0., 0.7)
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Test 4: Vertical fault

The medium considered here is a pile of anisotropic layers with a fault in the
middle, which leads to a discontinuity of the layers atx = .5. Each geological layer
is meshed with one layer of discretization cells only. A Dirichlet boundary condition
is imposed.

The domainΩ may be decomposed asΩ = Ω1 ∪ Ω2, with Ω2 = Ω \ Ω1, with
Ω1 = Ωℓ

1 ∪ Ωr
1, and

Ωℓ
1 = (0.; .5] ×

(

4
⋃

k=0

[.05 + 2k × .1; .05 + (2k + 1) × .1)

)

,

Ωr
1 = (.5; 1) ×

(

4
⋃

k=0

[2k × .1; (2k + 1) × .1)

)

.

It is described in Figure 2 whereΩ1 is in black andΩ2 in white.

(0,0)

(1,1)(0,1)

(1,0)

Figure 2. The computational domain and approximate solution on a fine grid (320 ×
320) for Test 4, vertical fault

As in the case of Test 3, the exact solution is not known, and the expected results
are the same as those of test 3, namely minimum and maximum values, outward fluxes
and the energiesE1 andE2.

The diffusion tensorK is anisotropic and heterogenous, and is given by:

K =

(

α 0
0 β

)

, with



















(

α
β

)

=

(

102

10

)

onΩ1,

(

α
β

)

=

(

10−2

10−3

)

onΩ2
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– Meshes:mesh5 (nonconforming rectangular mesh) see Figure 8, the square
mesh20 × 20 denoted bymesh5reg and a reference mesh, for instance the square
mesh320 × 320 calledmesh5ref .

– Boundary conditions:

{

ΓD = ∂Ω, ΓN = ∅, f = 0,

ū(x, y) = 1 − x

Test 5: Heterogeneous rotating anisotropy

This test is inspired from [AND 07, LEP 05], and induces numerical locking for
some schemes.

K =
1

(x2 + y2)

(

10−3x2 + y2 (10−3 − 1)xy
(10−3 − 1)xy x2 + 10−3y2

)

,

u(x, y) = sin πx sin πy, f = −∇ · (K∇u),

– Meshes :mesh2 (uniform rectangular meshes)

– Test Boundary conditions:

{

ΓD = ∂Ω, ΓN = ∅,
ū(x, y) = sinπx sin πy

Test 6: Oblique drain

This test case represents a situation which is encountered in underground flow en-
gineering where an oblique drain consisting in a very permeable layer concentrates
most part of the flow; this drain is meshed with only one layer of discretization cells.
in the case of a pressure gradient driven transport, as oftendescribed in reservoir en-
gineering, it seems important that the discretization cells consist in only one homone-
neous material: numerical experiments show that otherwisethe solution may be badly
approximated. Here we consider the steady case, but wish to verify that the outward
fluxes are as close as possible to the exact values for the meshes considered here, both
for the conforming and nonconforming meshes.

The domainΩ is composed of 3 subdomains:














Ω1 = {(x, y) ∈ Ω; φ1(x, y) < 0},
Ω2 = {(x, y) ∈ Ω; φ1(x, y) > 0, φ2(x, y) < 0},
Ω3 = {(x, y) ∈ Ω; φ2(x, y) > 0},
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with
{

φ1(x, y) = y − δ(x − .5) − .475,

φ2(x, y) = φ1(x, y) − 0.05.

We take the slope of the drainδ = 0.2 and define the exact solution and the source
term by:

u(x, y) = −x − δy, onΩ, f = −∇(K∇u),

where the permeability tensorK is such that its principal axes are parallel and perpen-
dicular to the drain:

K = Rθ

(

α 0
0 β

)

R−1
θ ,

with θ such thatδ = tan θ and :


















(

α
β

)

=

(

102

10

)

, onΩ2,

(

α
β

)

=

(

1
10−1

)

, onΩ1 ∪ Ω3.

– Meshes :mesh6, mesh7
– Boundary conditions:

{

ΓD = ∂Ω, ΓN = ∅,
ū(x, y) = −x − δy

Test 7: Oblique barrier

This test case is similar to the Test 6, except that we now haveto deal with a barrier,
and the aim is that the scheme should respect this barrier as well as the outward fluxes.

We take the same geometry as test 6 above, with the slope of thedrainδ = 0.2.

We take the exact solution to be

u(x, y) =















− φ1(x, y) onΩ1,

− φ1(x, y)/10−2 onΩ2,

− φ2(x, y) − 0.05/10−2 onΩ3,

andf = −∇·(K∇u), where the permeability tensorK is heterogeneous and isotropic:

K =

(

α 0
0 α

)

,

with :

α =















1 onΩ1,

10−2 onΩ2,

1 onΩ3.
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X

Y
θ

Ω

Figure 3. Parallelogram-shaped domainΩ showing the distancesX andY and the
angleθ.

– Meshes :mesh6
– Boundary conditions:



























ΓD = ∂Ω, ΓN = ∅,

ū(x, y) =















− φ1(x, y) on∂Ω ∩ ∂Ω1,

− φ1(x, y)/10−2 on∂Ω ∩ ∂Ω2,

− φ2(x, y) − 0.05/10−2 on∂Ω ∩ ∂Ω3.

Test 8: Perturbed parallelograms [AAV 07]

This test case was given to us by I. Aavatsmark [AAV 07], and ismeant to test the
schemes for the violation of the maximum principle within the domain. The domain
Ω is parallelogram shaped, as shown in figure 3. The parametersshown in figure 3
areX = 1, Y = 1/30 andθ = 30◦. The medium is homogeneous and isotropic with
K = Id.

– Mesh:mesh8 (perturbed parallelogram mesh) see Figure 10.

– Boundary conditions and right hand side:











ΓD = ∂Ω, ΓN = ∅, f = 0 in all cells except cell(6, 6) where
∫

cell(6,6)

f(x) dx = 1.

ū(x, y) = 0 on∂Ω.

Note that the solutionu of this problem should be a function with a maximum in
cell (6, 6), decreasing smoothly to zero towards the boundary. Ifu shows internal
oscillations or ifu < 0, Hopf’s first lemma is violated.

Note that cell(i, j) is numbered byi + 11(j − 1) in the datamesh8.
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Test 9: Anisotropy and wells [AAV 07]

Here,Ω is again the square unit domainΩ = (0, 1) × (0, 1). The medium is
homogeneous and anisotropic with

K = M(−θ)

[

1 0
0 10−3

]

M(θ), M(θ) =

[

cos θ sin θ
− sin θ cos θ

]

, (3)

whereθ = 67.5◦.

– Mesh:mesh9, the grid is a square uniform grid with11 × 11 cells (Figure 11).

– Boundary conditions and right hand side:

- The source densityf is zero in all cells.

- The pressure is fixed in two cells, approximating a sink and asource with
fixed pressure:

u = 0 in cell (4, 6),

u = 1 in cell (8, 6).
(4)

- Homogeneous Neumann conditions apply at the outer boundary:

−K∇u · n = 0 on∂Ω. (5)

The solutionu of this problem should satisfyu ∈ [0, 1]. If u has extrema on the
no-flow boundary withu 6∈ [0, 1], Hopf’s second lemma is violated.

Note that cell(i, j) is numbered byi + 11(j − 1) in the datamesh9.

3. Expected results

When refined the meshes are numberedi = 1 to ngrid, from coarsest to finest.
The structure of the expected results is given in the filetemplate.tex. For each
value ofi, one should provide:

For all runs:

– nunkw number of unknowns

– nnmat number of nonzero terms in the matrix

– sumflux the discrete flux balance, that is:sumflux= flux0+flux1+fluy0+fluy1-sumf,

whereflux0, flux1, fluy0, fluy1 are the outward fluxes at the boundariesx =
0, x = 1, y = 0, y = 1, for example

flux0 is an approximation of−
∫

x=0

K∇u · n ds
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andsumf =
∑

K∈T
|K|f(xK) wherexK denotes some point (which should be pre-

cised) of the control volumeK.

– umin: value of the minimum of the approximate solution.

– umax: value of the maximum of the approximate solution.

When the analytical solution is known and the mesh refined:

Let us denote byu the exact solution, byT the mesh and byuT = (uK)K∈T the
piecewise constant approximate solution.

– erl2, relative discreteL2 norm of the errorerl2 where:

erl2 =









∑

K∈T

|K|(u(xK) − uK)2

∑

K∈T

|K|u(xK)2









1

2

wherexK denotes some point (which should be precised) of the controlvolumeK,
(or a variant of such a norm, to be precised).

– ergrad relativeL2 norm of the error on the gradient, if available (give the defi-
nition of the discrete gradient)

– ratiol2: for i ≥ 2,

ratiol2(i) = −2
ln(erl2(i)) − ln(erl2(i− 1))

ln(nunkw(i)) − ln(nunkw(i− 1))

– ratiograd, for i ≥ 2,

ratiograd(i) = −2
ln(ergrad(i)) − ln(ergrad(i− 1))

ln(nunkw(i)) − ln(nunkw(i− 1))
.

– erflx0,erflx1, erfly0,erfly1 relative error betweenflux0, flux1,fluy0, fluy1 and the corresponding flux of the exact solution:

erflx0 =

∣

∣

∣

∣

flux0+
∫

x=0 K∇u · n
∫

x=0
K∇u · n

∣

∣

∣

∣

(except for the fluxes at y=0 and y=1 for case test 2 -Numericallocking- because these
are zero,give the value of the approximate fluxes only in thiscase).

– erflm L∞ norm of the error on the meanvalue of the flux through the edgesof
the mesh, if available (give the definition of numerical flux(K∇u · n)T )

erflm = max

{∣

∣

∣

∣

1

|σ|

∫

σ

(K∇u · n− (K∇u · n)T )

∣

∣

∣

∣

, σ edges ofT
}
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– o
vl2 order of convergence of the method in theL2 norm of the solution as
defined byexrl2 with respect to the mesh size:

ocvl2 =
ln(erl2(imax)) − ln(erl2(imax− 1))

ln(h(imax)) − ln(h(imax − 1))

whereh is the maximum of the diameter of the control volume

– o
vgradl2 order of convergence of the method in theL2 norm of the gradient
as defined byergradl2 with respect to the mesh size:

ocvgrad =
ln(ergrad(imax)) − ln(ergrad(imax− 1))

ln(h(imax)) − ln(h(imax − 1))

For tests 3, 4, 8,9, the exact solution is not known, the maximum principle and the
overall precision of the scheme can be tested by computing:

– umin: value of the minimum of the approximate solution.

– umax: value of the maximum of the approximate solution.

– flux0, flux1, fluy0, fluy1 outward normal fluxes to the boundariesx =
0, x = 1, y = 0 andy = 1 (useless in case of test 9).

The same values should be computed on a reference fine grid so as to be able to
compare the results.

For tests 3, 4, sincef = 0, we can compute :

– ener1, ener2: values of the discrete computations of the energies given by the
formulae (2) (if a discrete gradient is available in the caseof ener1).

– eren: relative error betweenener1, ener2:

eren =
|ener1− ener2|

max(ener1, ener2)
.

4. The meshes

Figures of the meshes are given after the references. We provide two different
formats for the meshes:*.typ1 and *.typ2, which are described in the fileREADME in the directoryMeshes.

The size steps of the meshes are given in the following table:
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i 1 2 3 4 5 6 7
mesh1 2.50E-01 1.25E-01 6.25E-02 3.12E-02 1.56E-02 7.81E-03 3.91E-03
mesh2 3.54E-01 1.77E-01 8.84E-02 4.42E-02 2.21E-02 1.10E-02 5.52E-03
mesh3 3.54E-01 1.77E-01 8.84E-02 4.42E-02 2.21E-02
mesh 4 3.29E-01 1.70E-01
mesh 5 1.41E-01
mesh6 1.25E-01
mesh7 1.25E-01
mesh8 1.24E-01
mesh9 1.29E-01

Please use the same format as above when entering your results in the tables
of template.tex, that is the format:sign integer dot integer ingeger Esign integer integer. This format is given for instance by the FORTRAN for-
matES9.2
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Figure 4. Triangular mesh with acute angles: meshesmesh1_1 (left) andmesh1_4
(right)

Figure 5. Uniform rectangular mesh: meshesmesh2_1 (left) andmesh2_4 (right)
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Figure 6. Locally refined non conforming rectangular mesh: meshesmesh3_1 (left)
andmesh3_4 (right)

Figure 7. Conforming distorted quadrangular mesh: meshesmesh4_1 (left) andmesh4_2 (right)
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Figure 8. Non conforming regular rectangular meshmesh5

Figure 9. Coarse oblique mesh:mesh6 (Left).Fine oblique mesh for the oblique bar-
rier and drain tests:mesh7 (Right)

Figure 10.Perturbed parallelogram gridmesh8 with 11 × 11 cells. To visualize the
grid, on this picture the height is 3 times the real height of the grid described in the
test case.
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Figure 11. square uniform gridmesh9 with 11 × 11 cells.
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