BENCHMARK ON DISCRETIZATION SCHEMES



FOR ANISOTROPIC DIFFUSION PROBLEMS ON GENERAL GRIDS OVERVIEW OF THE RESULTS - PART I

Raphaèle Herbin and Florence Hubert

LATP (UMR CNRS 6632), Université de Provence, Marseille France. {herbin,fhubert}@latp.univ-mrs.fr

The participating schemes and teams

### Cell centred schemes

• CMPFA, by S. Mundal, D. A. Di Pietro and I. Aavatsmark. • FVHYB, by L. Agelas and D. A. Di Pietro. • FVSYM, by C. Le Potier.

## Discrete duality finite volume schemes

• DDFV-BHU, by F. Boyer and F. Hubert.

• DDFV-HER, by F. Hermeline.

• DDFV-MNI, by I. Moukouop Nguena and A. Njifenjou.

#### Mixed or hybrid methods

• MFD-BLS, by K. Lipnikov.

• MFD-FHE, by B. Flemisch and R. Helmig.

• MFD-MAN, by G. Manzini.

| $-\operatorname{div}(\mathbf{K}\nabla u) = f \text{ in } \Omega$ Non homogeneous Dirichlet boundary conditions $\int_{-\operatorname{div}(\mathbf{K}\nabla u) = f \text{ in } \Omega} \int_{-\operatorname{div}(\mathbf{K}\nabla u) = f \text{ or } U = f $ | Test 1.1 - mesh1_1<br>$L^2$ norm of the solution (order in {2,3})                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Minimum and maximum of the approximate solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| with $\mathbf{K} = \begin{pmatrix} 1.5 & 0.5 \\ 0.5 & 1.5 \end{pmatrix}$ and $u(x, y) = 16x(1 - x)y(1 - y)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $= \frac{-2\pi i 2}{10^4} \qquad \text{Test 1.1, Mesh. : sqrt(nnmat)->ergrad} \qquad 10^4 \qquad \text{Test 1.1, Mesh. : h->ergrad} \qquad 10^4 $ | mesn $4_1$ mesn $4_2$ uminuminumaxuminCMPFA9.95E-031.00E+002.73E-039.99E-01CVFE0.00E+008.43E-010.00E+009.14E-01DDFV-BHU1.33E-029.96E-013.63E-039.99E-01DDFV-HER0.00E+001.03E+000.00E+001.01E+00DDFV-MNI-3.09E-011.03E+000.00E+001.00E+00DDFV-MNI-3.09E-011.03E+003.65E-031.01E+00DDFV-MNI1.34E-021.03E+003.65E-031.01E+00DG-C-2.33E-039.96E-01-3.24E-049.99E-01DG-W-7.90E-059.22E-01-8.18E-069.66E-01FEQ10.00E+008.61E-010.00E+001.00E+00FEQ20.00E+009.99E-010.00E+001.00E+00FVYB2.14E-039.84E-017.16E-049.93E-01FVSYM7.34E-039.59E-012.33E-039.89E-01MFD-BLS8.54E-039.55E-012.44E-039.87E-01MFD-FHE9.73E-039.45E-012.90E-039.83E-01MFD-MAN6.64E-039.71E-011.50E-039.93E-01 |





| Results for Test                                | 2 : Nu   | merical         | Lockin          | ıg    |         |              |
|-------------------------------------------------|----------|-----------------|-----------------|-------|---------|--------------|
|                                                 |          |                 |                 |       |         |              |
|                                                 |          | $\min(\min), i$ | max(umax), i    | ocvl2 | ocvgrad | erflm        |
|                                                 | CMPFA    | -1.10E+00, 1    | 1.04E+00, 3     | 1.09  | /       | 6.36E + 02   |
| $(\nabla \nabla u) = f$ in O                    | CVFE     | -1.01E-00, 2    | 1.01E-01, 2     | 2.00  | 1.00    | 1.55E + 01   |
| $\mathbf{x} \mathbf{v} (u) = \int \Pi \Omega u$ | DDFV-BHU | -9.27E-01, 1    | 1.17E+00, 1     | 1.76  | 1.21    | 7.51E + 00   |
| DC                                              | DDFV-HER | -4.20E-01, 2    | 9.12E+00, 4     | /     | /       | 7.16E-03     |
| ann BC                                          | DDFV-OMN | -8.24E-01, 1    | 7.76E-01, 1     | 2.00  | 1.00    | 2.11E + 00   |
| 0                                               | DG-W     | -1.18E-01, 1    | 1.18E-01, 1     | 2.00  | 1.00    | 1.69E + 01   |
| x = 0                                           | FEP1     | -9.48E-03, 1    | 9.75E-03, 1     | 2.00  | 1.01    | /            |
|                                                 | FEP2     | -9.56E-01, 1    | 9.56E-01, 1     | 2.97  | 2.00    | /            |
|                                                 | FVSYM    | -1.76E+00, 2    | 1.80E+00, 2     | 2.38  | 1.47    | 7.29E + 00   |
| $1 \cup 1$                                      | MFD-BLS  | -6.50E+00, 2    | 5.75E+00, 2     | 2.54  | /       | $3.59E{+}01$ |
| a tand                                          | MFD-FHE  | -6.50E+00, 2    | 5.75E+00, 2     | 2.54  | 1.51    | $3.59E{+}01$ |
| $() 1()^{3}$                                    | MFD-MAN  | -6.62E+00, 2    | 5.50E+00, 2     | 2.49  | 1.50    | 3.58E + 01   |
|                                                 | MFD-MAR  | -6.50E+00, 2    | 5.75E+00, 2     | 2.53  | /       | $3.59E{+}01$ |
| $(2\pi x) e^{-2\pi 10^{-2.5}y}$                 | MFE      | -6.50E+00, 2    | $5.75E{+}00, 2$ | 2.53  | 1.47    | $3.59E{+}01$ |
| $I(Z\pi x)e$                                    | MFV      | -6.50E+00, 2    | $5.75E{+}00, 2$ | 2.41  | 1.51    | $3.58E{+}01$ |
|                                                 | SUSHI-P  | -6.50E+00, 2    | $5.75E{+}00, 2$ | 2.53  | 1.47    | $3.59E{+}01$ |
|                                                 | SUSHI-NP | -1.93E-02.4     | 1.89E-02.4      | 0.37  | 1.99    | /            |

► On such meshes, the DDFV schemes all seem to coincide. Same is true with MFD-BLS, MFD-FHE, MFD-MAN, MFD-MAR, MFE, SUSHI-P(Hybrid ver-

► Order of convergence vary more than on other tests.

Results for Test 3: Oblique flow

# The values of umin, umax

## The energies

|          | ener1                                                                                         | eren_i                                                                                                                                                                                                                                                                                  | i                                                      |                                                        | ener1                                                  | eren_i                                                 | i                                                       |
|----------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|
| CVFE     | 2.24E-01                                                                                      | 8.42E-02                                                                                                                                                                                                                                                                                | 1                                                      | FVSYM                                                  | 2.20E-01                                               | 0.00E + 00                                             | 1                                                       |
|          | 2.42E-01                                                                                      | 3.33E-03                                                                                                                                                                                                                                                                                | 7                                                      |                                                        | 2.42E-01                                               | 0.00E + 00                                             | 8                                                       |
| DDFV-BHU | 2.14E-01                                                                                      | 9.60E-02                                                                                                                                                                                                                                                                                | 1                                                      | LATTB                                                  | 2.42E-01                                               | 1.64E-02                                               | 1                                                       |
|          | 2.42E-01                                                                                      | 7.11E-06                                                                                                                                                                                                                                                                                | 7                                                      |                                                        | 2.42E-01                                               | 3.00E-04                                               | 7                                                       |
| DDFV-HER | 2.14E-01                                                                                      | 9.46E-02                                                                                                                                                                                                                                                                                | 1                                                      | MFD-BLS                                                | 2.38E-01                                               | 4.44E-15                                               | 1                                                       |
|          | 2.42E-01                                                                                      | 1.91E-05                                                                                                                                                                                                                                                                                | 7                                                      |                                                        | 2.42E-01                                               | 6.74E-13                                               | 7                                                       |
| DDFV-MNI | 2.14E-01                                                                                      | 9.61E-02                                                                                                                                                                                                                                                                                | 1                                                      | MFD-FHE                                                | 2.19E-01                                               | 2.09E-01                                               | 1                                                       |
|          | 2.42E-01                                                                                      | 1.86E-04                                                                                                                                                                                                                                                                                | 5                                                      |                                                        | 2.42E-01                                               | 1.05E-04                                               | 7                                                       |
| DDFV-OMN | 1.81E-01                                                                                      | 3.68E-03                                                                                                                                                                                                                                                                                | 1                                                      | MFD-MAN                                                | 1.91E-01                                               | 1.87E-14                                               | 1                                                       |
|          | 2.42E-01                                                                                      | 1.77 E-06                                                                                                                                                                                                                                                                               | 7                                                      |                                                        | 2.42E-01                                               | 3.70E-14                                               | 8                                                       |
| DG-C     | 5.04E-01                                                                                      | 9.88E-02                                                                                                                                                                                                                                                                                | 1                                                      | MFD-MAR                                                | 2.38E-01                                               | 9.85E-13                                               | 1                                                       |
|          | 2.42E-02                                                                                      | 2.48E-05                                                                                                                                                                                                                                                                                | 7                                                      |                                                        | 2.42E-01                                               | 1.97E-10                                               | 8                                                       |
| DG-W     | 1.90E-01                                                                                      | 5.67E-01                                                                                                                                                                                                                                                                                | 1                                                      | MFE                                                    | 1.25E-01                                               | 2.46E-02                                               | 1                                                       |
|          | 2.44E-01                                                                                      | 2.85 E-05                                                                                                                                                                                                                                                                               | 7                                                      |                                                        | 2.41E-01                                               | 2.91E-03                                               | 8                                                       |
| FEQ1     | 2.21E-01                                                                                      | 3.67E-01                                                                                                                                                                                                                                                                                | 1                                                      | MFV                                                    | 4.85E-01                                               | 8.23E-07                                               | 1                                                       |
|          | 2.44E-01                                                                                      | 3.17E-02                                                                                                                                                                                                                                                                                | 7                                                      |                                                        | 2.42E-01                                               | 9.74E-06                                               | 7                                                       |
| FEQ2     | 2.64E-01                                                                                      | 3.41E-01                                                                                                                                                                                                                                                                                | 1                                                      | NMFV                                                   | 2.33e-01                                               | 1.45e-01                                               | 1                                                       |
|          | 2.42E-01                                                                                      | 0.00E + 00                                                                                                                                                                                                                                                                              | 7                                                      |                                                        | 2.45E-01                                               | 1.94E-02                                               | 7                                                       |
| FVHYB    | 2.13E-01                                                                                      | 2.55E-01                                                                                                                                                                                                                                                                                | 1                                                      | SUSHI-NP                                               | 2.25E-01                                               | 3.01E-01                                               | 1                                                       |
|          | 2.42E-01                                                                                      | 8.19E-03                                                                                                                                                                                                                                                                                | 6                                                      |                                                        | 2.43E-01                                               | 1.28E-02                                               | 7                                                       |
|          |                                                                                               | •                                                                                                                                                                                                                                                                                       | ,                                                      |                                                        | •                                                      |                                                        | -                                                       |
|          | CVFE<br>DDFV-BHU<br>DDFV-HER<br>DDFV-MNI<br>DDFV-OMN<br>DG-C<br>DG-W<br>FEQ1<br>FEQ2<br>FVHYB | ener1CVFE2.24E-01DDFV-BHU2.14E-012.42E-012.42E-01DDFV-HER2.14E-012.42E-012.42E-01DDFV-MNI2.14E-012.42E-012.42E-01DDFV-OMN1.81E-012.42E-012.42E-02DG-C <b>5.04E-01</b> 2.42E-022.42E-01DG-W1.90E-012.44E-012.44E-01FEQ12.21E-012.44E-012.42E-01FEQ22.64E-01FVHYB2.13E-012.42E-012.42E-01 | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ |

▶ Most schemes are accurate on the energy on the coarse grids.

 $-\operatorname{div}(\mathbf{K}\nabla u) = 0 \text{ in } \Omega$ Non homogeneous Dirichlet boundary conditions with  $\mathbf{K} = R_{\theta} \begin{pmatrix} 1 & 0 \\ 0 & 10^{-3} \end{pmatrix} R_{\theta}^{-1}, \ \theta = 40 \text{ degrees}$  $\bar{u}(x,y) = \begin{cases} 1 \text{ on } (0,.2) \times \{0.\} \cup \{0.\} \times (0,.2) \\ 0 \text{ on } (.8,1.) \times \{1.\} \cup \{1.\} \times (.8,1.) \\ \frac{1}{2} \text{ on } ((.3,1.) \times \{0\} \cup \{0\} \times (.3,1.) \\ \frac{1}{2} \text{ on } (0.,.7) \times \{1.\} \cup \{1.\} \times (0.,0.7) \end{cases}$ 

|          | umin_i     | umax_i     | i              |          |          |          |   |
|----------|------------|------------|----------------|----------|----------|----------|---|
| CMPFA    | 6.90E-02   | 9.31E-01   | 1              |          | umin_i   | umax_i   | i |
|          | 9.83E-04   | 9.99E-01   | $\overline{7}$ | FVSYM    | 6.85E-02 | 9.32E-01 | 1 |
| CVFE     | 0.00E + 00 | 1.00E + 00 | 1              |          | 4.92E-04 | 9.99E-01 | 8 |
|          | 0.00E + 00 | 1.00E + 00 | 7              | LATTB    | 1.14E-01 | 8.86E-01 | 1 |
| DDFV-BHU | -4.72E-03  | 1.00E + 00 | 1              |          | 9.36E-04 | 9.99E-01 | 7 |
|          | -5.31E-04  | 1.00E + 00 | $\overline{7}$ | MFD-BLS  | 6.09E-02 | 9.39E-01 | 1 |
| DDFV-HER | -4.72E-03  | 1.00E + 00 | 1              |          | 1.29E-03 | 9.99E-01 | 7 |
|          | -5.96E-08  | 1.00E + 00 | $\overline{7}$ | MFD-FHE  | 7.06E-02 | /        | 1 |
| DDFV-MNI | -4.73E-03  | 1.00E + 00 | 1              |          | 1.00E-03 | 9.99E-01 | 7 |
|          | -1.07E-03  | 1.00E + 00 | 5              | MFD-MAN  | 7.56E-02 | 9.24E-01 | 1 |
| DDFV-OMN | 1.04E-01   | 8.96E-01   | 1              |          | 8.01E-04 | 9.99E-01 | 8 |
|          | 1.01E-03   | 9.99E-01   | $\overline{7}$ | MFD-MAR  | 6.09E-02 | 9.39E-01 | 1 |
| DG-C     | -9.35E-02  | 1.07E + 00 | 1              |          | 1.00E-03 | 9.99E-01 | 8 |
|          | -1.32E-03  | 1.00E + 00 | $\overline{7}$ | MFE      | 3.12E-02 | 9.69E-01 | 1 |
| DG-W     | -4.11E-02  | 1.04E + 00 | 1              |          | 5.08E-04 | 9.99E-01 | 8 |
|          | -3.71E-03  | 1.00E + 00 | 7              | MFV      | 1.22E-02 | 8.78E-01 | 1 |
| feq1     | 0.00E + 00 | 1.00E + 00 | 1              |          | 7.92E-04 | 9.99E-01 | 7 |
|          | 0.00E + 00 | 1.00E + 00 | 7              | NMFV     | 1.11e-01 | 8.88e-01 | 1 |
| FEQ2     | 0.00E + 00 | 1.00E + 00 | 1              |          | 1.28E-03 | 9.99E-01 | 7 |
|          | 0.00E + 00 | 1.00E + 00 | 7              | SUSHI-NP | 6.03E-02 | 9.40E-01 | 1 |
| FVHYB    | -1.75E-01  | 1.17E + 00 | 1              |          | 8.52E-04 | 9.99E-01 | 7 |
|          | -1.00E-03  | 1.00E + 00 | 6              |          |          |          | • |

► Maximum principle violated by DDFV, DG methods and FVHYB

scheme.