BENCHMARK ON DISCRETIZATION SCHEMES

FOR ANISOTROPIC DIFFUSION PROBLEMS ON GENERAL GRIDS OVERVIEW OF THE RESULTS - PART II

Raphaèle Herbin and Florence Hubert

LATP (UMR CNRS 6632), Université de Provence, Marseille France. {herbin,fhubert}@latp.univ-mrs.fr

	Test 4 : Vertical fault	
	Maximum principle	
$-\operatorname{div}(\mathbf{K}\nabla u) = 0$ in Ω	• Problems only with the DG methods.	The fluxes
$u = \bar{u} \text{ in } \partial\Omega$	The values of the energies	flux0 flux0 flux1 flux1 fluy0 fluy1 mesh5 mesh5 ref mesh5 ref mesh5 ref mesh5
Σ^{Ω_2}	ener1erenener1erenmesh5mesh5mesh5_refmesh5_ref	CMPFA -45.2 -42.1 46.1 44.4 -0.95 -2.33 4.84E-04
	CVFE 45.9 1.04E-02 43.3 6.25E-04 DDEV BIIL 42.1 3.65E.02 43.2 1.27E.03	CVFE -46.6 -42.2 48.5 44.5 0.87 -2.25 8.02E-04 DDFV-BHU -40.0 -42.1 41.8 44.4 -1.81 -2.33 9.08E-04
(10^2)	DDFV-HER 49.3 1.75E-01 43.8 1.64E-02	DDFV-HER -40.0 -42.0 41.8 44.3 -1.81 -2.35 9.08E-04
$ \begin{bmatrix} \alpha \\ \alpha \end{bmatrix} = \begin{bmatrix} 10^2 \\ 10^2 \end{bmatrix} $ on	Ω_1 , DDFV-MNI / / 43.8 6.23E-02	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \qquad \qquad$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DBF V=0 MIX -40.0 -42.1 41.0 -41.4 -1.01 -2.33 $5.00E-04$ DG-W -43.1 -42.1 45.3 44.5 -2.19 -2.32 $1.50E-03$
$\mathbf{K} = \begin{pmatrix} 0 & \beta \end{pmatrix}, \text{ with } \begin{pmatrix} 1 & -2 \end{pmatrix}$	DG^-W 45.0 $1.50E^{-02}$ 45.2 $7.05E^{-04}$ FEQ1 / / 43.3 $2.31E^{-03}$	FEQ1 / -42.2 / 44.5 / -2.16 /
$(1,0) \qquad \qquad \begin{pmatrix} 0 & \beta \\ \end{pmatrix} \qquad \qquad$	Ω_2 FEQ2 / / 43.2 0.00E+00	FEQ2 / -42.1 / 44.5 / -2.32 /
$[\langle \beta \rangle - \langle 10^{-3} \rangle]$	EVHYB 41.4 6.12E-02 / /	FVHYB -44.3 / 46.3 / 0.49 / 1.55E-04
	MFD-BLS 33.9 7.93E-14 43.2 2.84E-12	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
and $\overline{u}(x, y) = 1 - x$.	MFD-FHE / / 43.2 3.53E-04	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	MFD-MAN 31.4 1.16E-12 43.2 4.71E-14	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	MFD-MAR 41.1 1.30E-13 43.2 2.69E-12	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NMFV -43.2 -42.1 44.5 44.4 -1.23 -2.33 2.32E-04
	505HI-NP 59.1 0.07E-02 40.1 0.00E-04	SUSHI-NP -40.9 -42.1 43.1 44.4 -2.21 -2.33 6.94E-04

• The methods that have trouble with PPMax are the most accurate for

the energy on coarse meshes.

 $-\operatorname{div}(\mathbf{K}\nabla u) = f \text{ in } \Omega$

avec and $u(x, y) = \sin \pi x \sin \pi y$.

Comparison of L^2 norm of the solution (order in $\{2,3\}$)

Test 9: anisotropy and wells

with

where $\theta = 67.5^{\circ}$. and

u=0 in cell (4,6), u = 1 in cell (8, 6).

Values of umin and umax should be **umin=**0 and **umax=**1

	umin	umax		umin	umax
CMPFA	-6.77E-01	1.68E + 00			
CVFE	-1.16E-01	1.12E + 00	FVPMMD	$0.00E{+}00$	1.00E + 00
DDFV-BHU	-1.38E-01	1.14E + 00	MFD-BLS	-4.30E-02	1.04E + 00
DDFV-HER	-1.03E-01	1.10E + 00	MFD-FHE	-4.21E-02	1.04E + 00
DDFV-OMN	-7.07E-02	1.07E + 00	MFD-MAR	-4.30E-02	1.04E + 00
DG-C	-1.02E-03	9.98E-01	MFE	0.00E + 00	1.00E + 00
FEQ1	-2.36E-02	1.02E + 00	MFV	-1.22E-01	1.07E + 00
FEQ2	-5.94E-03	1.01E + 00	NMFV	1.83E-02	1.01E + 00
FVHYB	-3.69E-02	1.04E + 00	SUSHI-NP	-1.00E+00	2.00E + 00
FVSYM	-7.63E-02	1.07E + 00	SUSHI-P	0.00E + 00	1.00E + 00

► Maximum principle satisfied only by the two nonlinear schemes FVP-MMD NMFVand SUSHI-NPscheme.

Conclusions

\rightsquigarrow Relative homogeneity of the results.

 \rightsquigarrow Higher order schemes are more precise in both L^2 and H^1 norms. DDFV methods are more precise in H^1 norm.

 \rightarrow Cell centered schemes and mimetic schemes are generally more robust.

 \sim Nonlinear schemes seem necessary to enforce the maximum principle and/or the positiveness (or monotonicity) of the schemes.

Possible extensions

 \rightarrow Positive schemes and schemes satisfying the maximum principle. \rightarrow Coupling strongly heterogeneous problems with transport equations:

 $\begin{cases} -\operatorname{div}(\mathbf{K}\nabla p) = 0\\ c_t + \operatorname{div}(f(c)\mathbf{K}\nabla p) = 0 \end{cases}$

 \sim 3D tests on distorted nonconforming meshes.