Convergence of the Finite Volume MPFA O Scheme for Heterogeneous Anisotropic Diffusion
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‘ Abstract \

The Multipoint Flux Approximation (MPFA) O method is a cell centered finite volume
discretization of second order elliptic operators. In the oil industry, it has been widely used
for the discretization of diffusion fluxes in multiphase Darcy problems (see, e.g.,[2, 4, 5]).
Up to now, the analysis has hinged on strong assumptions on the mesh, and discontinuous
diffusion coefficients haven’t been accounted for. In [1] we have stated the equivalence of the
O method with a discrete variational formulation which fits in the framework proposed in
6, 7]. Convergence results have been obtained under mild assumptions on the mesh and for
diffusion coefficients in [L°(Q)]4*%. In particular, a sufficient condition ensuring coercivity

has been proposed.

‘ Introduction \

We consider the following problem: find an approximation of %, weak solution to the equation:

{—div(A(:B)Vﬂ) =/, mnf} (1)

u =0, on O,

where Q is an open bounded connected polygonal subset of R%. d € N*, f e L?(Q) and A is
a measurable function from € to My(R) s.t. for a.e. x € Q, A(x) is symmetric and the set
of its eigenvalues is included in [a(z), B(x)] with a, 8 € L*(Q).

A function % € H}(1) is said to be a weak solution of (1) if

/ Az)Vu(z) - Vu(x)dx = / f(x)v(x)dz, Yov e H&(Q) (2)
€2 2

‘ Description of the Finite Volume MPFA O Scheme in 2D \

The aim of the Finite Volume MPFA O Scheme is to compute fluxes at half edges around

each vertex s. To compute fluxes:

define a interaction zone in “O” (a set of subcells) around each vertex s;

in each subcell of the interaction zone, assume that the potential u is linear;
enforce potential continuity at points z3;

enforce flux continuity at each edge.
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‘ Space discretization \

The finite volume discretization of the domain €2 is given by D = (M, P, V, E). Define
- M., the set of cells,

- P, the set of centers,

- &5, the faces sharing the vertex s,

- Vi, the set of the vertices of the cell K,
-V, the set of vertices, - V5, the set of the vertices of the face o,
- &, the set of faces, - Ex¢, the set of the faces of the cell K.

Let S be the set of subcells and hp the size of discretization.

‘ Discrete spaces and operators \

Define the following discrete spaces:
- H pq, the set of piecewise constant functions on each cell K € M;
- Hg, the set of piecewise constant functions on each subcell K¢ € S;

- Hop, the set ((ug)kem, (Ud)oecs, sev) € Reard(M)xcard(&s) g ¢ us = 0 for all o € Euyt.
Equip Hp with the inner product norm || - ||p.

We shall also need the following operators:
- Pjq is defined for all u € Hp by (Ppu)(z) = ug for ae. x € K, for all K € M,;
- Pp is the projection of the set of compactly supported continuous functions onto Hp.

‘ MPFA Oscheme and its variational formulation \

The idea of the proof can be summarized as tollows:

- find a discrete gradient reconstruction Vp : Hp — ?—[% which strongly approximates the

gradient of smooth functions in [LQ(Q)]d;

- find a second discrete gradient reconstruction %p :Hp — ’H% to weakly approximate
gradients in [L2(Q)]%;

- substitute the discrete gradients in the variational formulation (2);

- obtain (2) as the limit of the discrete variational formulation for hp — 0.

The discrete variational formulation is defined as follows: find u € Hp

/ Vou(z) - AMz)Vpu(z)dz = / f(z)Ppv(z)dx Vv € Hop, (3)
Q Q)

where
- Vpiss.t., for each piecewise linear function v on S which vanishes on 992, Vp(Ppu) = Vu;

- Vp is defined as follows: for all u € Hp and for a.e. x € K,

. |
(Vpu)(z) = K| > mi(uy —ug)ng,.
*l oeEkNE,

Then, the variational formulation (3) is equivalent to the Finite Volume MPFA O Scheme

‘ Convergence of the scheme \

Under mild regularity assumptions on the mesh, the following inequalities hold for all u € Hp

(see e.g. [3]):
- for all g € [2,2d/(d — 2)], | Prgull ooy < @ VA Cap [lll

- [1Ppgu(- +€) = Pagull gy < (€] [lullp(d 12))2, V€ € RY,

- [IVpullzaq) < Vdllullp.
Let ap be the bilinear form defined as follows:

ap(u,v) = /QVDU(CIZ‘) ANz)Vpu(z)dz Y(u,v) € Hp x Hp. (4)

Provided ap is coercive (i.e., da > 0,Vu € Hp, aplu,u) > oz||u||2D), lullp <
2 Vd Copll £ 12(q)- Rellich theorem states that

- Ju € HY(Q), u — uin L*(Q) as hp — 0;

- Vpu converges weakly to Vu as hp — 0.

Using the above results together with (3), we can prove that Vpu — Vu strongly in
[L2(Q)]9%% as hp — 0.The convergence of the method can be proved taking v = Ppy,
@ € C(Q), as a test function in (3) and letting hp — 0.

To improve coercivity on general meshes, we can add penalty terms to the bilinear form ap,
thus obtaining, for all (u,v) € Hp X Hp,

ap(u,v) = ap(u,v) + S: S: (a% Z y K| Rf(,a(u)R%,a(v)) (5)

2
KeT seVy oc€ENE, (xK’ 0)

For all u € Hp, 0 € Eg N &, s € Vi, K € T, the residual terms Rj-  are defined by

Ry ,(u) = ug —ug — (Vpu)g, - (x5 — 2k).

The convergence can be proved using a similar argument.

‘ Numerical tests \

Consider the following exact solution to (2):

u = sin(rz)sin(ry), K = [g (1)] | (6)

Two convergence tests with 0 = 1 and 0 = 0.1 were performed.
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The tests have been run on 2d basin-like meshes.
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