A symmetric finite volume scheme for anisotropic heterogeneous second-order elliptic
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‘ Abstract \

In this paper, we assess a new family of finite volume discretization schemes on benchmark
test cases. These are based on the discrete variational formulation framework developped
in [EGH 08], [EH 07], [EGH 07]. The use of a subgrid for each cell of the mesh enables
us to obtain fluxes only between cells sharing an edge as opposed to the cell centered finite
volume scheme [EGH 07] for which fluxes are also defined between cells sharing only a vertex.
The resulting finite volume schemes are cell centered, symmetric and coercive on general
polygonal and polyhedral meshes and anisotropic heterogeneous media and can be proved to
be convergent even for L°° diffusion coefficients under usual shape regularity assumptions.
Using L type interpolation from [AEMN 07], [AAV 07] for the intermediate subgrid unknowns
enable us to take into account large jumps of the diffusion coefficients.

Introduction \

We consider the following problem: find an approximation of %, weak solution to the equation:

—divA(z)Vu = f, in 1]
u=0, ueol.

where © is an open bounded connected polygonal subset of R?. d € N*, f € L), Ais a

measurable function from 2 to M (R) such that for a.e. x € Q, A(x) is symmetric and the
set of its eigenvalues is included in |a(x), B(x)] with «, 8 € L°(1).
A function u € H&(Q) is said to be a weak solution of (1) if

i € Hy(Q),
/A(J?)V’INL(J?)-V’U(J?)dZU:/f(x)’u(aj)dx7 Vo € HY(Q). 2]
{2 Q)

Finite volume discretization

The finite volume discretization of the domain €Q is given by D = (K, &, P).
- KC the set of cells
- & the set of faces
- P the set of centers of the cells
- & the set of the faces of the cell s

The size of the mesh is defined by hx = sup,cx diameter(x). For each cell k, we define
subcells by the set of pyramids {x¢ },cg, joining the face o to the cell center xy.
Let & be the set of faces of the subcell k5. Let .S be the set of all subcells.

- Eoxt the set of boundaries faces

K

Discretes spaces and operators

Define the following discrete spaces:

- Hy, the space of piecewise constant functions on each cell x € K identified to RX
- H g, the set of piecewise constant functions on each subcell Kk, € S.

-Hy ¢ = Hie X {(Vo)geg; Vo € Riorall o € £} equipped with the seminorm || - || g,
We shall also need the following operators:

- Py is defined for all vic ¢ € Hc g by (Pivgc g)(x) = vi for ae. z € k, for all & € K.

- P ¢ 1s the projection of the set of continuous functions which vanish on 052 to Hy: ¢.

A symmetric, coercive, convergent cell centered finite volume scheme on
general polygonal and polyhedral meshes

The idea of the proof can be summarized as follows:
- find a discrete gradient reconstruction Vi ¢ : Hy ¢ — 7—[% which strongly approximates

the gradient of smooth functions in [L2(Q)]%;

- substitute the discrete gradient in the variational formulation [2];

- obtain |2] as the limit of the discrete variational formulation for Ap — 0.
The discrete variational formulation is defined as follows: find u € Hy ¢

/ Vi eu(r)  AMz)Vic gv(r)dr = / flz)Pev(z)dz Vv € Hy g 3]
€2 €2

where

- Vi ¢ 1s such that for each v € Hy ¢ and for each subcell k5 € 5

(Vi 00, = = [Jol(er = vn)mno + 3 lel (v = v s |

|/€0| ecx,

where ve = Ile(vic,vg, ) and Ile such that |Ile((p(zk),x € K), (p(T5),0 € Ext)) —
ple)| < Clp) iy e(lg) for all g € C°

The above formulation (3) is equivalent to a hybrid finite volume scheme where the fluxes
are such that

0
ap(ue,vie) = DO Y Frolug,ug)(vs —vy), Vuge € Hg ¢ 4]
KEK o€,

‘ Convergence of the scheme \

Under mild regularity assumptions on the mesh, the following inequalities hold for all u €
Hic g (see e.g. [EGH 00]):

- for all ¢ € [2,2d/(d — 2)], || Pcull o) < ¢ Vd Coob [[ull e
- |1Pul- +€) = Peull ey < €]l (d Q)12 VE € RY,

- IV gull ) < Vllull gy
Let ap be the bilinear form defined as follows :

ap(ui g, v £) = /Q Viceu(r) Mz)Vi egv(z)dr V(ugg,vie) € Hie X Hice. 9]

Provided ap is coercive (i.e., da > 0, \V'u]Qg e H]Qg, ap(ulc,g,uic,g) > Oé||ulc,£||%gg)>

luc.ellic,e < 2 Vd Coopll fll L2y
Rellich theorem states that

- Ju € H)(Q), ug g — uin L*(Q) as hig — 0

- Vi gu converges weakly to Vi in L2(Q) as hx — 0.

The convergence of the method can be proved taking v = Py g, ¢ € CZ°(€2), as a test
function in (3) and letting hy — 0.

To ensure coercivity, we add penalty terms to the bilinear form ap, thus obtaining, for all

(ulC,E,vIC, E) € Hice X Hi g,

5]

ap(uk.g,vice) = aplug.e,vce)+y Y [Oén,a >

KeEK o€, s€&q,U{o}

RHU,S(UIC,E)RRG,S(UIC,S)] ;

Ko,S
where ay, o 1s a positive real and the residuals Ry, s are defined as follows:

Ry, s(vic.g) = vs — vk — (2o — 2) (Vi € )k,

The convergence can be proved using a similar argument.

‘ Numerical tests \

e Test 5 Heterogeneous rotating anisotropy, min = 0, max = 1 , uniform
rectangular mesh, mesh2

1 |nunkw nnmat sumflux erl2 ratioerl2  ergrad ratioergrad
2.1 16 180 —4.19e—01 1.07e+01 — 2.28e+00 —

22| 64 1012 —1.27e—01 1.50e400 2.83e+00 1.46e+00 6.42e—01
23| 256 4692 —1.05e—01 2.20e—01 2.77e+00 7.15e—01 1.03e4-00
241 1024 20116 —7.03e—02 3.99e—02 2.47e+00 3.20e—01 1.16e+4-00
25| 4096 83220 —3.55e—02 8.69e—03 2.20e+00 1.06e—01 1.59e+-00
26| 16384 338452 —1.33e—02 2.05e—03 2.09e+00 2.99e—02 1.83e+-00

ocvl2=2.09, ocvgradl2=1.83

1 umin umax
2.1 —1.92e+01 5.38e+00
2.2 —5.28e+00 1.34e+00
23| —1.39e4+00 1.03e+00
24| —3.57e—01 1.00e+00
2.0 —9.06e—02 1.00e+00
2.6 —2.28¢—02 1.00e+00

e Test 6 Oblique drain, min = —1.2, max = 0, Coarse mesh6 and Fine mesh7
oblique meshes

i |nunkw nnmat sumflux erl2 ergrad
C| 210 3748 —4.48e—14 8.18e—16 8.93e—15
F| 230 3976 2.10e—12 3.4le—11 3.65e—09

1 umin umax
C|—1.15e+00 —5.43e—02
F|—1.15e+00 —5.43e—02
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