A symmetric finite volume scheme for anisotropic heterogeneous second-order elliptic problems

Leo Agelas* and Daniele A. Di Pietro[†]

* Institut Français du Pétrole 1 & 4, avenue de Bois-Préau 92852 Rueil-Malmaison Cedex - France (leo.agelas@ifp.fr)

† Institut Français du Pétrole 1 & 4, avenue de Bois-Préau 92852 Rueil-Malmaison Cedex - France (daniele-antonio.di-pietro@ifp.fr)

Abstract

In this paper, we assess a new family of finite volume discretization schemes on benchmark test cases. These are based on the discrete variational formulation framework developped in [EGH 08], [EH 07], [EGH 07]. The use of a subgrid for each cell of the mesh enables us to obtain fluxes only between cells sharing an edge as opposed to the cell centered finite volume scheme [EGH 07] for which fluxes are also defined between cells sharing only a vertex. The resulting finite volume schemes are cell centered, symmetric and coercive on general polygonal and polyhedral meshes and anisotropic heterogeneous media and can be proved to be convergent even for L^{∞} diffusion coefficients under usual shape regularity assumptions. Using L type interpolation from [AEMN 07], [AAV 07] for the intermediate subgrid unknowns enable us to take into account large jumps of the diffusion coefficients.

Introduction

We consider the following problem: find an approximation of \tilde{u} , weak solution to the equation:

$$\begin{cases} -\operatorname{div}\Lambda(x)\nabla \tilde{u} = f, \text{ in } \Omega \\ \tilde{u} = 0, \quad \tilde{u} \in \partial \Omega. \end{cases}$$
 [1]

where Ω is an open bounded connected polygonal subset of \mathbb{R}^d , $d \in \mathbb{N}^*$, $f \in L^2(\Omega)$, Λ is a measurable function from Ω to $\mathcal{M}_d(\mathbb{R})$ such that for a.e. $x \in \Omega$, $\Lambda(x)$ is symmetric and the set of its eigenvalues is included in $[\alpha(x), \beta(x)]$ with $\alpha, \beta \in L^{\infty}(\Omega)$. A function $\tilde{u} \in H_0^1(\Omega)$ is said to be a weak solution of (1) if

$$\begin{cases} \tilde{u} \in H_0^1(\Omega), \\ \int_{\Omega} \Lambda(x) \nabla \tilde{u}(x) \cdot \nabla v(x) \mathrm{d}x = \int_{\Omega} f(x) v(x) \mathrm{d}x, \quad \forall v \in H_0^1(\Omega). \end{cases}$$

Finite volume discretization

The finite volume discretization of the domain Ω is given by $\mathcal{D} = (\mathcal{K}, \mathcal{E}, \mathcal{P})$.

- $\mathcal K$ the set of cells
- $\mathcal{E}_{\mathrm{ext}}$ the set of boundaries faces
- ${\cal E}$ the set of faces
- ${\cal P}$ the set of centers of the cells
- \mathcal{E}_{κ} the set of the faces of the cell κ

The size of the mesh is defined by $h_{\mathcal{K}} = \sup_{\kappa \in \mathcal{K}} \operatorname{diameter}(\kappa)$. For each cell κ , we define subcells by the set of pyramids $\{\kappa_{\sigma}\}_{\sigma \in \mathcal{E}_{\kappa}}$ joining the face σ to the cell center x_{κ} . Let $\mathcal{E}_{\kappa_{\sigma}}$ be the set of faces of the subcell κ_{σ} . Let S be the set of all subcells.

Discretes spaces and operators

Define the following discrete spaces:

- $H_{\mathcal{K}}$, the space of piecewise constant functions on each cell $\kappa \in \mathcal{K}$ identified to $\mathbb{R}^{\mathcal{K}}$.
- \mathcal{H}_S , the set of piecewise constant functions on each subcell $\kappa_{\sigma} \in S$.
- $-H_{\mathcal{K},\mathcal{E}} = H_{\mathcal{K}} \times \{(v_{\sigma})_{\sigma \in \mathcal{E}}; v_{\sigma} \in \mathbb{R} \text{ for all } \sigma \in \mathcal{E}\}$ equipped with the seminorm $\|\cdot\|_{H_{\mathcal{K},\mathcal{E}}}$ We shall also need the following operators:
- $P_{\mathcal{K}}$ is defined for all $v_{\mathcal{K},\mathcal{E}} \in H_{\mathcal{K},\mathcal{E}}$ by $(P_{\mathcal{K}}v_{\mathcal{K},\mathcal{E}})(x) = v_{\kappa}$ for a.e. $x \in \kappa$, for all $\kappa \in \mathcal{K}$.
- $P_{\mathcal{K},\mathcal{E}}$ is the projection of the set of continuous functions which vanish on $\partial\Omega$ to $H_{\mathcal{K},\mathcal{E}}$.

A symmetric, coercive, convergent cell centered finite volume scheme on general polygonal and polyhedral meshes

The idea of the proof can be summarized as follows:

- find a discrete gradient reconstruction $\nabla_{\mathcal{K},\mathcal{E}}:\mathcal{H}_{\mathcal{K},\mathcal{E}}\to\mathcal{H}_S^d$ which strongly approximates the gradient of smooth functions in $[L^2(\Omega)]^d$;

- substitute the discrete gradient in the variational formulation [2];
- obtain [2] as the limit of the discrete variational formulation for $h_{\mathcal{D}} \to 0$.

The discrete variational formulation is defined as follows: find $u \in \mathcal{H}_{\mathcal{K},\mathcal{E}}$

$$\int_{\Omega} \nabla_{\mathcal{K},\mathcal{E}} u(x) \cdot \Lambda(x) \nabla_{\mathcal{K},\mathcal{E}} v(x) dx = \int_{\Omega} f(x) P_{\mathcal{K}} v(x) dx \quad \forall v \in \mathcal{H}_{\mathcal{K},\mathcal{E}}.$$

where

 $-\nabla_{\mathcal{K},\mathcal{E}}$ is such that for each $v \in \mathcal{H}_{\mathcal{K},\mathcal{E}}$ and for each subcell $\kappa_{\sigma} \in S$

$$(\nabla_{\mathcal{K},\mathcal{E}}v)_{\kappa_{\sigma}} = \frac{1}{|\kappa_{\sigma}|} \Big[|\sigma|(v_{\sigma} - v_{\kappa})\mathbf{n}_{\kappa,\sigma} + \sum_{e \in \mathcal{E}_{\kappa_{\sigma}}} |e| \Big(v_{e} - v_{\kappa}\Big)\mathbf{n}_{\kappa_{\sigma},e} \Big].$$

where $v_e = \Pi_e(v_{\mathcal{K}}, v_{\mathcal{E}_{ext}})$ and Π_e such that $|\Pi_e((\varphi(x_{\kappa}), \kappa \in \mathcal{K}), (\varphi(x_{\sigma}), \sigma \in \mathcal{E}_{ext})) - \varphi(x_e)| \leq C(\varphi) h_{\mathcal{K}} \epsilon(h_{\mathcal{K}})$ for all $\varphi \in C_c^{\infty}$.

The above formulation (3) is equivalent to a hybrid finite volume scheme where the fluxes are such that

$$a_{\mathcal{D}}(u_{\mathcal{K},\mathcal{E}},v_{\mathcal{K},\mathcal{E}}) = \sum_{\kappa \in \mathcal{K}} \sum_{\sigma \in \mathcal{E}_{\kappa}} F_{\kappa,\sigma}(u_{\mathcal{K}},u_{\mathcal{E}})(v_{\kappa}-v_{\sigma}), \quad \forall v_{\mathcal{K},\mathcal{E}} \in H^{0}_{\mathcal{K},\mathcal{E}}.$$

Convergence of the scheme

Under mild regularity assumptions on the mesh, the following inequalities hold for all $u \in \mathcal{H}_{\mathcal{K},\mathcal{E}}$ (see e.g. [EGH 00]):

- for all $q \in [2, 2d/(d-2)], \|P_{\mathcal{K}}u\|_{L^q(\Omega)} \le q \sqrt{d} C_{\text{sob}} \|u\|_{H_{\mathcal{K}.\mathcal{E}}}$
- $\|P_{\mathcal{K}}u(\cdot + \xi) P_{\mathcal{K}}u\|_{L^{1}(\mathbb{R}^{d})} \le |\xi| \|u\|_{H_{\mathcal{K},\mathcal{E}}} (d |\Omega|)^{1/2}, \ \forall \xi \in \mathbb{R}^{d},$
- $\|\nabla_{\mathcal{K},\mathcal{E}} u\|_{L^2(\Omega)} \le \sqrt{d} \|u\|_{H_{\mathcal{K},\mathcal{E}}}$

Let $a_{\mathcal{D}}$ be the bilinear form defined as follows:

$$a_{\mathcal{D}}(u_{\mathcal{K},\mathcal{E}},v_{\mathcal{K},\mathcal{E}}) = \int_{\Omega} \nabla_{\mathcal{K},\mathcal{E}} u(x) \cdot \Lambda(x) \nabla_{\mathcal{K},\mathcal{E}} v(x) dx \quad \forall (u_{\mathcal{K},\mathcal{E}},v_{\mathcal{K},\mathcal{E}}) \in \mathcal{H}_{\mathcal{K},\mathcal{E}} \times \mathcal{H}_{\mathcal{K},\mathcal{E}}. \quad [5]$$

Provided $a_{\mathcal{D}}$ is coercive (i.e., $\exists \alpha > 0$, $\forall u_{\mathcal{K},\mathcal{E}} \in \mathcal{H}_{\mathcal{K},\mathcal{E}}$, $a_{\mathcal{D}}(u_{\mathcal{K},\mathcal{E}}, u_{\mathcal{K},\mathcal{E}}) \geq \alpha \|u_{\mathcal{K},\mathcal{E}}\|_{\mathcal{K},\mathcal{E}}^2$, $\|u_{\mathcal{K},\mathcal{E}}\|_{\mathcal{K},\mathcal{E}} \leq 2 \sqrt{d} C_{\text{sob}} \|f\|_{L^2(\Omega)}$.

- Rellich theorem states that
- $\exists \overline{u} \in H_0^1(\Omega), u_{\mathcal{K},\mathcal{E}} \to \overline{u} \text{ in } L^2(\Omega) \text{ as } h_{\mathcal{K}} \to 0$
- $\nabla_{\mathcal{K},\mathcal{E}}u$ converges weakly to $\nabla \overline{u}$ in $L^2(\Omega)$ as $h_{\mathcal{K}} \to 0$.

The convergence of the method can be proved taking $v = P_{\mathcal{K},\mathcal{E}}\varphi$, $\varphi \in C_c^{\infty}(\Omega)$, as a test function in (3) and letting $h_{\mathcal{K}} \to 0$.

To ensure coercivity, we add penalty terms to the bilinear form $a_{\mathcal{D}}$, thus obtaining, for all $(u\mathcal{K}, \mathcal{E}, v\mathcal{K}, \mathcal{E}) \in \mathcal{H}_{\mathcal{K}, \mathcal{E}} \times \mathcal{H}_{\mathcal{K}, \mathcal{E}}$,

$$\tilde{a}_{\mathcal{D}}(u_{\mathcal{K},\mathcal{E}},v_{\mathcal{K},\mathcal{E}}) = a_{\mathcal{D}}(u_{\mathcal{K},\mathcal{E}},v_{\mathcal{K},\mathcal{E}}) + \sum_{\kappa \in \mathcal{K}} \sum_{\sigma \in \mathcal{E}_{\kappa}} \left[\alpha_{\kappa,\sigma} \sum_{s \in \mathcal{E}_{\kappa_{\sigma}} \cup \{\sigma\}} \frac{|s|}{d_{\kappa_{\sigma},s}} R_{\kappa_{\sigma},s}(u_{\mathcal{K},\mathcal{E}}) R_{\kappa_{\sigma},s}(v_{\mathcal{K},\mathcal{E}}) \right],$$

where $\alpha_{\kappa,\sigma}$ is a positive real and the residuals $R_{\kappa_{\sigma},s}$ are defined as follows:

$$R_{\kappa_{\sigma},s}(v_{\mathcal{K},\mathcal{E}}) = v_s - v_{\kappa} - (x_{\sigma} - x_{\kappa})^t (\nabla v_{\mathcal{K},\mathcal{E}})_{\kappa_{\sigma}}$$

The convergence can be proved using a similar argument.

Numerical tests

• Test 5 Heterogeneous rotating anisotropy, min = 0, max = 1, uniform rectangular mesh, mesh2

i	nunkw	nnmat	sumflux	erl2	ratioerl2	ergrad	ratioergrad
2_1	16	180	-4.19e - 01	1.07e + 01	_	2.28e+00	_
2_2	64	1012	-1.27e - 01	1.50e + 00	2.83e+00	1.46e + 00	6.42e - 01
2_3	256	4692	-1.05e - 01	2.20e - 01	2.77e + 00	7.15e - 01	1.03e + 00
2_4	1024	20116	-7.03e - 02	3.99e - 02	2.47e + 00	3.20e - 01	1.16e + 00
2_5	4096	83220	-3.55e - 02	8.69e - 03	2.20e+00	1.06e - 01	1.59e + 00
2 6	16384	338452	-1.33e-02	2.05e - 03	$2.09e \pm 00$	2.00e - 02	$1.83e \pm 00$

ocvl2=2.09, ocvgradl2=1.83

i	umin	umax
2_1	-1.92e + 01	5.38e+00
2_2	-5.28e+00	1.34e + 00
2_3	-1.39e+00	1.03e+00
2_4	-3.57e - 01	1.00e+00
2_5	-9.06e - 02	1.00e+00
2 6	-2.28e-02	

• Test 6 Oblique drain, min = -1.2, max = 0, Coarse mesh6 and Fine mesh7 oblique meshes

i	nunkw	nnmat	sumflux	erl2	ergrad
С	210	3748	-4.48e - 14	8.18e - 16	8.93e - 15
F	230	3976	2.10e - 12	$3.41e{-11}$	3.65e - 09
			umin		
		C -1	1.15e + 00 - 5	6.43e - 02	
		F -1	1.15e+00 -5 1.15e+00 -5	6.43e - 02	

References

[AAV 07] AAVATSMARK I., EIGESTAD G.T., HEIMSUND B.O., MALLISON B.T. and NORDBOTTEN J.M. A new Finite Volume Approach to Efficient Discretization on Challenging Grids, *Proc. SPE 106435*, *Houston*, 2007.

[AEMN 07] AAVATSMARK I., EIGESTAD G.T., MALLISON B.T. and NORDBOTTEN J.M. A compact multipoint flux approximation method with improved robustness, Numerical Methods for Partial Differential Equations, 2007.

[EGH 00] EYMARD R., GALLOUËT T. and HERBIN R. The Finite Volume Method, Hand-book of Numerical Analysis, P.G. Ciarlet, J.L. Lions editors, Elsevier, 7, 2000.

[EGH 07] EYMARD R., GALLOUËT T. and HERBIN R., A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis, *Comptes rendus Mathmatiques de l'Acadmie des Sciences*, 344,6, 2007, p. 403-406.

[EGH 08] EYMARD R., GALLOUËT T., HERBIN R., Discretization schemes for heterogeneous and anisotropic diffusion problems on general nonconforming meshes, arXiv:0804.1430.

[EH 07] EYMARD R. and HERBIN R., A new colocated finite volume scheme for the incompressible Navier-Stokes equations on general non matching grids, *Comptes rendus Mathmatiques de l'Acadmie des Sciences*, 344(10), p. 659-662, 2007.