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Context and Outline

This work fall within the scope of a Joint Research Group LJLL-CEA Saclay on
multiphase flows and coupling of multiscale models:
LJLL: C. Chalons, F. Coquel, E. Godlewsky, F. Lagoutière, N. Seguin, P.-A. Raviart,
CEA Saclay: A. Ambroso, B. Boutin,T. Galié,
+ some-time participation from EDF: J.-M. Hérard, O. Hurisse.

Motivation: Nuclear reactor cooling and neutron moderation −→ need for stable
computations of liquid water-vapor flows.

Outline

⊲ Two-Fluid Two-Pressure Model (equilibrium model)

⊲ Relaxation method

⊲ Riemann solver for the Relaxation Model

⊲ Some numerical results

⊲ Conclusions and Perspectives
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The Two-Fluid Two-Pressure Model















































∂tα1 + uI∂xα1 = 0

∂tα1ρ1 + ∂xα1ρ1u1 = 0

∂t(α1ρ1u1) + ∂x(α1ρ1u2
1 + α1p1(ρ1)) − pI∂xα1 = 0

∂tα2ρ2 + ∂xα2ρ2u2 = 0

∂t(α2ρ2u2) + ∂x(α2ρ2u2
2 + α2p2(ρ2)) + pI∂xα1 = 0

α1 + α2 = 1 .

−→ Interface velocity and interface pressure are chosen as

uI = u2, pI = p1

Consequence: the void fraction is transported by a pure contact discontinuity.

(see M.R. Baer and J.W. Nunziato, (1986), T. Gallouët, J.M. Hérard and N. Seguin, (2004), P.
Embid and M. Baer, (1992)).
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Properties of the model

Five real eigenvalues
λ1 = u1 − c1,

λ3 = u2 − c2,
λ0 = u2,

λ2 = u1 + c1,

λ4 = u2 + c2.

Hyperbolic if u2 , u1 ± c1.

The characteristic field associated to λ0 is LD and the characteristic fields
associated to {λi}i=1,...,4 are GNL .

x

t

uk − ck
GNL

λ0 = u2
LD

uk + ck
GNL

uL

u−
u+

uR
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Relaxation system
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∂tα1 + u2∂xα1 = 0

∂t(α1ρ1) + ∂x(α1ρ1u1) = 0

∂t(α1ρ1u1) + ∂x(α1ρ1u2
1 + α1Π1) −Π1∂xα1 = 0

∂t(α2ρ2) + ∂x(α2ρ2u2) = 0

∂t(α2ρ2u2) + ∂x(α2ρ2u2
2 + α2Π2) + Π1∂xα1 = 0

∂tT1 + u2∂xT1 = λ(τ1 −T1)

∂tT2 + u2∂xT2 = λ(τ2 −T2)

with ak > ρkck, k = 1, 2 (Whitham stability condition) and
Πk = pk(1/Tk) + a2

k(Tk − τk), k = 1, 2.
We will use the following short notations

∂tv + ∂xg(v) + d(v)∂xv = λR(v), t > 0, x ∈ R.

Formally, when λ→ ∞ this system converges to the previous (equilibrium) two-fluid
model.

(see S. Jin and Z. Xin, (1995), F. Coquel, E. Godlewski, A. In, B. Perthame and P. Rascle,
(2001), C. Chalons and F. Coquel, (2005) ).
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Splitting

We solve the relaxation system by a splitting procedure:

⊲ First step: we solve ∂tv + ∂xg(v) + d(v)∂xv = 0

⊲ Second step: we solve ∂tv = λR(v) with λ→ ∞

In the following we will focus on the first step and, in particular on the Riemann

solver needed to implement a Godunov type method.
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Properties of the Relaxation Model

Five real eigenvalues
λr

1 = u1 − a1τ1,

λr
3 = u2 − a2τ2,

λr
0 = u2,

λr
2 = u1 + a1τ1,

λr
4 = u2 + a2τ2.

Hyperbolic if u2 , λk, k = 1, 2.

All the characteristic fields are LD

x

t

uk − akτk

λr
0 = u2

uk + akτk

vL

v−
v+

vR
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New Relaxation model

Due to the presence of nonconservative products, the solution of this system is still
hard. We propose to consider a modified problem:
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∂tα1 + u2∂xα1 = 0

∂tα1ρ1 + ∂xα1ρ1u1 = 0

∂t(α1ρ1u1) + ∂x(α1ρ1u2
1 + α1Π1) = ΠI∂xα1δx−u∗2t

∂tα2ρ2 + ∂xα2ρ2u2 = 0

∂t(α2ρ2u2) + ∂x(α2ρ2u2
2 + α2Π2) = −ΠI∂xα1δx−u∗2t

∂tT1 + u2∂xT1 = 0

∂tT2 + u2∂xT2 = 0

(1)

The Riemann problem solution is explicitly known
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How do we guess ΠI∂xα1?

We chose to be exact on contact discontinuity solutions for the equilibrium system

x

t
α1L
u1L
u2L

α1R
u1R
u2R

x

t (ΠI∂xα1)1

α1L
u1L
u2L

α1R
u1R
u2R

x

t (ΠI∂xα1)2

α1L
u1L
u2L

α1R
u1R
u2R

We need to chose one of the two estimates. Do we?
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Theorem

With this choice of ΠI∂xα1, the proposed relaxation method:

(i) (Conservativity): is always conservative on αkρk, k = 1, 2and α1ρ1u1 + α2ρ2u2.

(ii) (L1 stability): provides numerical solutions that remain in the phase space Ω

provided that the free parameters ak, k = 1, 2are chosen sufficiently large.

(iii) (Isolated λ0-contact discontinuities): captures exactly the stationary admissible

λ0-contact discontinuities of the equilibrium system.
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Pure stationary contact discontinuity

Fraction α1
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Pure stationary contact discontinuity

Velocity u2
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Shock Tube - Different Guess

Fraction α1
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Shock Tube - Different Guess

Velocity u2
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Conclusion - Current and Future Work

We presented a relaxation strategy for easily dealing with both the nonlinearities
associated with the pressure laws and the nonconservative terms of the two-fluid
two-pressure model.
The proposed approximate Riemann solver is given by explicit formulas, preserves
the natural phase space, and exactly captures the coupling waves between the two
phases.

What’s next?

⊲ Treatment of source terms (gravity and friction, in particular) −→ N. Seguin
talk on Thursday afternoon.

⊲ Full two-fluid two-pressure model (with partial energy balance equations) −→
work in progress.

⊲ Coupling of the two-fluid model with drift models for multiphase flows
(multiscale coupling, c f E. Godlewski talk on Thursday morning +
J.-M. Hérard, O. Hurisse poster in Session 2).
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