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Contents • A 2D affine interpolation formula.

Reconstruction of discrete gradient on a 2D “median dual mesh”.

• Associated discrete duality and discrete entropy dissipation formulae.

• Application in 3D (we refer to [H2] for a numerical study; see [P] for a different 3D scheme) :

an analogue of the “DDFV” schemes in the spirit of Hermeline and Domelevo, Omnès.

Discrete duality and entropy dissipation formulae.

• Usefulness of the discrete duality formulae.

Discrete duality formulae like formula (3) are a crucial tool of the “discrete calculus” for finite volume schemes.
They allow in particular to discretize coercive and monotone diffusion operators with the help of coercive and
monotone finite volume schemes. Further, (3) ensures that the variational character of a diffusion operator is
preserved at the discrete level. If ~a(·) is the gradient of a convex functional Φ(·), so that the diffusion operator
−div~a(∇w) derives from the functional w 7→

∫

Ω
Φ(∇w), then the discrete diffusion operator −divT~a(∇TwT)

derives from the discrete functional wT 7→
∑

D∈D
Vol(D)Φ(∇TwT) (with the notation below). This allows

us to calculate discrete solutions by minimization algorithms such as the Polak-Ribière method. Discrete
entropy dissipation formulae like (4) require strong constraints on the geometry of the mesh; but they appear
as necessary in order to work with the “nonlinear” notions of entropy/renormalized solutions.

• Application to a doubly nonlinear convection-diffusion problem :

DDFV scheme in 2D and 3D, convergence proof.

Gradient interpolation from the vertices of a 2D polygon
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Let Π be a plane in R
3 with a unit normal vector ~n, and σ ⊂ Π be

a polygon1with l vertices x∗1, . . . , x
∗
l numbered in the counter-clockwise

sense with respect to the orientation of Π induced by ~n. Let x∗l+1 stand
for x∗1. Introduce the barycentre (i.e., the middlepoint) x∗i,i+1

of [x∗i , x
∗
i+1].

Let x∗σ ∈ Π. Introduce the (signed) area of the triangle x∗i x
∗
σx

∗
i+1:

mi,i+1 = 0.5 〈~n,
−−−−→
x∗σx

∗
i,i+1
,
−−−−→
x∗i x

∗
i+1 〉 (1)

Denote the area of σ by m; we have m =
∑l

i=1mi,i+1.

Lemma 1 For all ~r ‖Π, ~r = 1
m

∑l

i=1(~r ·
−−−−→
x∗i x

∗
i+1)

[

~n×
−−−−→
x∗σx

∗
i,i+1

]

.

The proof just combines the formulae of [ED,Lemma 6.1],[ABH,Lemma 2.4].

Corollary 2 Take (w∗
i )l

i=1 ⊂ R, w∗
l+1 := w∗

1. Consider the expression

(

∑l

i=1
mi,i+1

)−1 ∑l

i=1
(w∗

i+1 − w∗
i )

[

~n×
−−−−→
x∗σx

∗
i,i+1

]

. (2)

If w∗
i are the values of an affine function w at the vertices x∗i of the polygon σ,

expression (2) gives the projection of ∇w on the plane Π.

Remark 3 We guess that the affine interpolation formula (2) is well known. Unless l = 3 , formula (2) is

one among infinitely many linear forms in (w∗
i )

l

i=1 which share the consistency property of Corollary 2. Our
choice of (2) is motivated by the calculation that leads to the discrete duality property (3). If l = 3 , then (2)
is equivalent to any of the known formulae for three-point affine interpolation.

1In what follows, we identify R
2 with R

2×{0}⊂R
3 , set ~n =

−−−−→
(0, 0, 1) and use the 3D formalism : ‖~a‖ denotes the euclidean

norm of ~a ∈ R
3 ; by ~a ·~b , ~a ×~b and 〈~a,~b,~c 〉 we denote the scalar, vector and mixed products, respectively, for ~a,~b,~c ∈ R

3 .



2D mesh, discrete gradient and divergence operators. Discrete duality formulae.
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- We consider T a specific couple (D,M∗) of meshes. We take D a
partition (e.g., a triangulation) of Ω; each element of D is denoted by D

and called a diamond cell. Each D ∈ D is supplied with a centre x∗
D
; for

the sake of simplicity, one may assume that x∗
D
∈ D and D is convex.

- For each D ∈ D, we fix a counter-clockwise numbering of its vertices
by x∗1, . . . , x

∗
l (l ≥ 3), letting l+1 := 1. We set x∗i,i+1

= 0.5 (x∗i + x∗i+1) (the
middlepoint of [x∗i , x

∗
i+1]).

- A generic vertex of D is denoted by xK∗ . Each xK∗ is the centre of a
control volume K∗. The mesh M∗ = M∗ ∪ ∂M∗ is the median dual mesh
of D. If xK∗ ∈ ∂Ω, we write K∗ ∈ ∂M∗; if xK∗ ∈ Ω, we write K∗ ∈ M∗.
In the case each D admits a circumcircle and x∗

D
is its centre, M∗ is just

the Voronöı dual mesh of D.

- Each diamond D ∈ D is a polygon with vertices x∗1 = xK
∗
1

, . . . , x∗l = xK
∗
l

; it is split into l subdiamonds
S

D

i,i+1 which are the triangles with vertices x∗
D

, x∗i , x∗i+1 . For K∗ ∈ M∗ , V
∗(K∗) is the set of all subdiamonds

having xK∗ for a vertex. The set of all subdiamonds is denoted by S . In a subdiamond S = S
D

i,i+1 , we denote
by σ∗

S
the part of ∂K

∗
i ∩∂K

∗
i+1 included into S ; we denote its length by m∗

S
. We have σ∗

S
≡ [x∗

D
, x∗i,i+1] ; denote

by ~n∗
S

its unit normal vector such that ~n∗
S

= ~n×
−−−−→
x∗

D
x∗i,i+1/m

∗
S

(if m∗
S
≡ ‖

−−−−→
x∗

D
x∗i,i+1‖ = 0 , ~n∗

S
is arbirtary).

- For K∗ ∈ M∗ and S ∈ V
∗(K∗) , set ǫK∗

S
:= 0 if K∗ = K

∗
i , and ǫK∗

S
:= 1 if K∗ = K

∗
i+1 .

Diamonds, respectively subdiamonds, serve to define the discrete gradient, respectively the discrete
divergence operators between the spaces of discrete functions and discrete fields defined below.

- A discrete function on Ω is a set wT =
(

wK∗

)

K∗∈M
∗ of real values. The set of all such functions is denoted by

R
T . A discrete function wT is identified with x ∈ Ω 7→

∑

K∗∈M
∗ wK∗1lK∗(x) . Similarly, a discrete function on

Ω , wT ∈ R
T , is a set

(

wK∗

)

K∗∈M
∗ . If the components of wK∗ with K∗ ∈ ∂M∗ are zero, we write wT ∈ R

T

0 .

- A discrete field on Ω is a set ~FT =
(

~FD

)

D∈D
in R

2 . If a subdiamond S is included into D , we set

~FS := ~FD . The set of all discrete fields is denoted by (R2)D , and identify ~FT with x ∈ Ω 7→
∑

D∈D

~FD1lD(x) .

On R
T, resp. on (R2)D, define the scalar products

[[

wT, vT
]]

=
∑

K∗∈M
∗

Vol(K∗) wK∗vK∗ , respectively
{{

~FT, ~GT
}}

=
∑

D∈D

Vol(D) ~FD · ~GD

- Define the discrete gradient operator ∇T and the discrete divergence operator divT :

∇T :
R

T −→ (R2)D

wT 7→
(

∇Dw
T
)

D∈D
,

where the value ∇Dw
T is reconstructed by formulae (2),(1)

from the values w∗
1 = wK

∗
1
, . . . , w∗

l = wK
∗
l

of wT

at the vertices x∗1 = xK
∗
1
, . . . , x∗l = xK

∗
l

of σ = D, with x∗σ = x∗
D
.

divT :
(R2)D −→ R

T

~FT 7→ (vK∗)K∗∈M
∗ ,

where the entries vK∗ of the discrete function divT ~FT are given by

1

Vol(K∗)

∑

S∈V∗(K∗)

m∗
S
~FS · (−1)ǫ

K∗

S ~n∗
S
≡

1

Vol(K∗)

∑

S∈V∗(K∗)

(−1)ǫ
K∗

S 〈 ~FS, ~n,
−−−−→
x∗

D
x∗i,i+1 〉.

Here we mean that each S in V
∗(K∗) is of the form S

D

i,i+1 ; the notation ǫK∗

S
, x∗

D
, x∗i,i+1

under the sign “
∑

”
refers to S

D

i,i+1 . This formula corresponds to the standard finite volume (i.e. based upon Stokes’ formula)

discretization procedure on M∗ . The value Vol(K∗) vK∗ is the flux of the vector field ~FT through the

boundary ∂K∗ , thus it represents
∫

K∗ div ~FT . Indeed, thanks to the constraint x∗
D
∈D , whenever xK∗ is a

vertex of D ⊃ S , the vector (−1)ǫ
K∗

S ~n∗
S

is the normal vector to σS ⊂ ∂K∗ exterior to K∗ . The formulae for
∇T,divT work also when x∗

D
/∈ D ; one just need to consider subdiamonds of signed area, as in (1). This allows

to use e.g. the mesh T = (D,M∗) consisting of a Delaunay triangulation D with its Voronöı dual mesh M∗ .

Proposition 4 (d = 2) The discrete divergence and gradient operators divT, ∇T defined above are linked
by the following duality property :

∀ wT ∈ R
T

0 ∀ ~FT ∈ (Rd)D

[[

− divT[ ~FT] , wT

]]

=
{{

~FT , ∇TwT

}}

. (3)



While property (3) is well suited for the study of diffusion problems by variational techniques, in the entropy or
renormalized solutions setting it is not enough. Indeed, if we work with “nonlinear” test functions of the unknown
solution (e.g., sign (uT − k) , or the “truncations” Tk(uT) ), we need the “entropy dissipation” inequality (4)
stated below. We are able to show it in the case M∗ is “orthogonal”. More exactly, we ask that each diamond
cell D admits a circumcircle, and x∗

D
∈D is its centre (thus M∗ is the Voronöı dual mesh of D ).

For A : R 7→ R and a discrete function uT with entries uK∗ , denote by A(uT) the discrete function
with the entries A(uK∗) . For ψ ∈ L1(Ω) , denote by ψT the discrete function on Ω with the entries
ψK∗ = 1

Vol(K∗)

∫

K∗ ψ , K∗ ∈ M∗ .

Proposition 5 (d=2) Let M∗ be an orthogonal mesh in the above sense.
Let uT ∈ R

T

0 be a discrete function, and GT ∈ (Rd)D be a discrete field. Let ψ ∈ D(Ω), ψ ≥ 0.

Let S′ : R 7→ R be a bounded non-decreasing function, and S(r) =
∫ r

0
S′(s) ds.

Let A : R → R be a non-decreasing continuous function; set AS′(r) =
∫ r

0
S′(s) dA(s).

(e.g. in the case A = Id and S(r) = sign (r − k), the function AS′ (r) = |r − k| is the Kruzhkov’s entropy).

Assume that either S′(0) = 0, or ψ ∈ D(Ω) and maxK∗∈∂M
∗ diam (K∗) is small enough. Then

[[

− div T
[

|GT| ∇TA(uT)
]

, S′(uT)ψT

]]

≥
{{

|GT| ∇TAS′(uT) , ∇TψT

}}

. (4)

Application ([ABK]) :
[[

−divT
[∣

∣∇TuT

∣

∣

(p−2)
∇TuT

]

, sign+(uT−k) ψT

]]

≥
{{

∣

∣∇TuT

∣

∣

(p−2)
∇T

(

uT−k
)+
, ∇TψT

}}

.

“Double” 3D finite volume scheme with the discrete duality

- A “double” finite volume mesh of a bounded polyhedre Ω ⊂ R
3 is a triple T =

(

M,M∗,D
)

. Here

M = M ∪ ∂M , M is a partition of Ω in tetrahedra K , called primal volumes. We call ∂M the set of
all faces of volumes that are included in ∂Ω . These faces are considered as boundary volumes. For K ∈ ∂M ,
we choose a centre xK ∈ K . The set of vertices of all volumes K ∈ M is denoted by (xK∗)

K∗∈M
∗ ; these are

the centres of dual volumes.

- If K⊙,K⊕ ∈ M have a common face, we denote it by K⊙|K⊕ . Each face is supplied with a centre xK⊙|K⊕
,

assumed, for the sake of simplicity, to belong to K⊙|K⊕ . If xK∗ , xL∗ are neighbour vertices of K⊙|K⊕ , then xK∗|L∗

is the middlepoint of [xK∗ , xL∗ ] ; K∗|L∗ is the common boundary of the dual volumes with centres xK∗ , xL∗ .

- Now, M∗ is the dual mesh of M such that the dual volume K∗ with centre xK∗ has its vertices in the set
(xK)K ∪ (xK|L)K|L ∪ (xK∗|L∗)K∗|L∗ (see [H2]). We write xK∗ ∈ ∂Ω if K∗ ∈ ∂M∗ , and K∗ ∈ M∗ otherwise.

- A couple of neighbours {K⊙,K⊕} define an (oriented) diamond D = D
K⊙|K⊕ . This is the convex hull of

xK⊙
, xK⊕

and K⊙|K⊕ . The set D of all diamonds is a partition of Ω . In an oriented diamond D
K⊙|K⊕ ,

~eK⊙,K⊕
is the unit vector pointing from x⊙ to x⊕ ; ~nK⊙|K⊕ is the unit normal vector to K⊙|K⊕ such that

~nK⊙|K⊕
· ~eK⊙,K⊕

> 0 . This induces an orientation in the triangle K⊙|K⊕ (see Fig.3). We denote by Proj
D

,
Proj∗

D
the orthogonal projectors of R

3 on the line <~eK⊙,K⊕
> , resp. on the plane containing K⊙|K⊕ .
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Figure 3: 3D neighbour volumes, diamond, subdiamond. Zoom on a subdiamond.



- As in 2D, each diamond D
K⊙|K⊕ is split into l = 3 subdiamonds; a generic subdiamond S = S

K⊙|K⊕

K
∗
i
|K∗

i+1
is

the convex hull of xK⊙
, xK⊕

, xK⊙|K⊕
and of the neighbour vertices xK

∗
i
, xK

∗
i+1

of K⊙|K⊕ . Whenever a diamond

D
K⊙|K⊕ is fixed, we use a simplified notation, as shown in Fig.3. Notations V(K) , resp. V

∗(K∗) stand for the
sets of all subdiamonds intersecting K , resp., K∗ . Further, for S = S

K⊙|K⊕

K
∗
i
|K∗

i+1
we define

ǫK

S
:=

{

0, if K = K⊙

1, if K = K⊕

, ǫK∗

S
:=

{

0, if K∗ = K
∗
i

1, if K∗ = K
∗
i+1

.

We define similarly the spaces R
T, and (R3)D; the appropriate scalar product on R

T is now

[[

wT, vT
]]

:=
1

3

∑

K∈M

Vol(K) wKvK +
2

3

∑

K∗∈M
∗

Vol(K∗) wK∗vK∗

The discrete gradient ∇TwT ∈ (R3)D is defined by its entries: for D = D
K⊙|K⊕ ,

∇Dw
T is s.t.











Proj
D
(∇Dw

T) = w⊕−w⊙

d⊙,⊕
~e⊙,⊕, with w⊙ =wK⊙ , w⊕ =wK⊕ ;

Proj∗
D
(∇Dw

T) is the vector defined by formulae (2), (1)
with w∗

i = wK
∗
i
, ~n = ~n⊙,⊕, x∗σ = x∗⊙,⊕.

(5)

In a sense, the primal (resp., dual) mesh yields 1
3 (resp., 2

3 ) of the components of ∇Dw
T ( like in

[[

· , ·
]]

! ).

The discrete divergence divT ~FT ∈ R
T is defined by its entries as follows:

vK= 1
2Vol(K)

∑

S∈V(K)
(−1)ǫ

K
S 〈 ~FS,

−−−−−→
x∗⊙,⊕x

∗
i,i+1
,
−−−−→
x∗i x

∗
i+1 〉,

vK∗= 1
2Vol(K∗)

∑

S∈V∗(K∗)
(−1)ǫ

K∗

S 〈 ~FS,
−−→x⊙x⊕,

−−−−−→
x∗⊙,⊕x

∗
i,i+1

〉.
(6)

As in 2D, (6) comes by calculation from the finite volume (Stokes’-formula based) discretization on M , M∗ .

Proposition 6 (3D analogue of Propositions 4,5)

(i) With the above definitions, the discrete duality property (3) holds.

(ii) Further, assume that xK is the centre of the circumscribed ball of K and xK⊙|K⊕
is the

one of the circumscribed circle of K⊙|K⊕ (in which case M∗ is the Voronöı mesh dual to M).
Let A,S,GT, ψ, uT be as in Proposition 5. Then the discrete entropy dissipation inequality (4) holds.

A DDFV scheme for approximation of entropy solutions of a nonlinear convection-diffusion problem

In [ABK], we treat the “doubly nonlinear” problem
{

∂tu + div~f(u) − div~a(∇w) = f, w = A(u) in Q = (0, T ) × Ω,

u|t=0 = u0 in Ω, u = 0 on Σ = (0, T ) × ∂Ω,
(7)

with bounded data u0, f . The function ~a : R
N → R

N , taken under the form ~a(ξ) = k(|ξ|)ξ , is assumed to be of the Leray-Lions

kind (i.e., div~a(∇·) acts from W
1,p
0

into W−1,p′
). The nonlinearity A(·) is assumed continuous non-decreasing (it thus can

degenerate, so that (7) is of hyperbolic-parabolic type). The convection flux function ~f : R → R
3 is assumed merely continuous.

We combine a finite volume discretization in space (2D, as in [ABH] / 3D, as described above) on the orthogonal “double” mesh

with the time-implicit discretization in time with step ∆t . The diffusion term at the time n∆t is discretized under the form

−divT~a(∇Twn,T) , with the notation above; here un,T ∈ R
T

0
is the unknown solution at time n∆t , and wn,T = A(un,T) .

A term penalizing the differences (wK − wK∗ ) for K ∩ K∗ 6= ∅ is added in order to enforce the convergence of the functions

wn,M =
∑

K∈M
A(un

K)1lK , wn,M∗
=

∑

K∗∈M
∗ A(un

K∗ )1lK∗ to the same limit. The convection term is discretized in the usual

way (see [EGHM] and references therein). We adapt the associated “weak BV” techniques to the non-Lipschitz case, and obtain

an analogue of the entropy dissipation property of Proposition 5 for the convection terms. The scheme converges to the entropy

solution of (7) in the sense of J. Carrillo (see [EGHM]). Formulae (3),(4) are essential; other tools come from [EGHM, DO, ABH].
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