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USEFULNESS OF THE DISCRETE DUALITY FORMULAE.

Discrete duality formulae like formula (3) are a crucial tool of the “discrete calculus” for finite volume schemes.
They allow in particular to discretize coercive and monotone diffusion operators with the help of coercive and
monotone finite volume schemes. Further, (3) ensures that the variational character of a diffusion operator is
preserved at the discrete level. If d(-) is the gradient of a convex functional ®(-), so that the diffusion operator
—div d( Vw) derives from the functional w — [, ®( Vw), then the discrete diffusion operator —div*a( V*w®)
derives from the discrete functional w* — Y, .. Vol(D) ®(V*w®) (with the notation below). This allows
us to calculate discrete solutions by minimization algorithms such as the Polak-Ribiere method. Discrete
entropy dissipation formulae like (4) require strong constraints on the geometry of the mesh; but they appear
as necessary in order to work with the “nonlinear” notions of entropy/renormalized solutions.

e APPLICATION TO A DOUBLY NONLINEAR CONVECTION-DIFFUSION PROBLEM :
DDFYV scHEME IN 2D AND 3D, CONVERGENCE PROOF.

GRADIENT INTERPOLATION FROM THE VERTICES OF A 2D POLYGON

Let II be a plane in R?® with a unit normal vector 7, and ¢ C II be
a polygon'with [ vertices w7, ..., x; numbered in the counter-clockwise
sense with respect to the orientation of II induced by 7. Let zj, ; stand
for 27. Introduce the barycentre (i.e., the middlepoint) 7, of [z}, 7]
Let a7 € II. Introduce the (signed) area of the triangle xja}x;,,:

Polygon oCIl , oriented by w_LII
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miin = 0.5 (7, w5, 27Tl ) (1)
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Denote the area of o by m; we have m =", _; m; .
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LEMMA 1 For all 7||II, 7= 37 (7 afa}y) [ x ahaf,,].

The proof just combines the formulae of [ED,Lemma 6.1],|ABH,Lemma 2.4].

COROLLARY 2 Take (w})!_; C R, w},, :=w}. Consider the expression

l l

_ —_—
(O, mian) Do (i —wi) [ x gy, (2)

If i are the values of an affine function w at the vertices z of the polygon o,
expression (2) gives the projection of Vw on the plane II.

REMARK 3 We guess that the affine interpolation formula (2) is well known. Unless 1 = 3, formula (2) is

one among infinitely many linear forms in (w:‘)izl which share the consistency property of Corollary 2. Our
choice of (2) is motivated by the calculation that leads to the discrete duality property (3). If 1 =3, then (2)

is equivalent to any of the known formulae for three-point affine interpolation.

- —_—
n what follows, we identify R? with RZx{0} CR3 ,set @ = (0,0,1) and use the 3D formalism : ||@|| denotes the euclidean
normof @ €R3 ; by d@-b, @x b and (@,b,&) we denote the scalar, vector and mixed products, respectively, for @,b,&c R3 .



2D MESH, DISCRETE GRADIENT AND DIVERGENCE OPERATORS. DISCRETE DUALITY FORMULAE.

- We consider ¥ a specific couple (D,9*) of meshes. We take D a
partition (e.g., a triangulation) of ; each element of ® is denoted by D
and called a diamond cell. Each b € ® is supplied with a centre z7; for
the sake of simplicity, one may assume that 2% € p and D is convex.

- For each p € ®, we fix a counter-clockwise numbering of its vertices
5 by of,...,af (I > 3), letting [+1 := 1. We set x;,, = 0.5 (2} +z7) (the
middlepoint of [z}, 2;%,]).

- A generic vertex of ® is denoted by zx . Each z, is the centre of a
control volume k*. The mesh * = M* U OIMM* is the median dual mesh
of ®. If x,+ € 0N), we write k= € OIM™; if x,» € Q, we write k= € ™.

In the case each D admits a circumcircle and zj, is its centre, 9" is just
the Voronoi dual mesh of ©.

- Each diamond D € © is a polygon with vertices a2} = 2,y , ..., 2] = ) ; it is split into [ subdiamonds
Sy which are the triangles with vertices 2}, , 2} , 2j, . For x* € M, v*(k*) is the set of all subdiamonds
having - for a vertex. The set of all subdiamonds is denoted by & . In a subdiamond s = 57, , we denote
by of the part of Jk; MOk, included into s ; we denote its length by m . We have of = [, 2], 4] ; denote

diamond

.
i+l gub- _, control volume K*
diamond i1 % is its centre Ty

b 3k M M 1 h h k= ,Ifk * Sk 'f K — X* * — O Tk 1 b'
y 7ig its unit normal vector such that 75 =7 x 2,27, /mg (if mg = [|2527,4 (| =0, 7% is arbirtary).
-For k* € M* and s e Vv (k),set ef =0 if =k ,and €f =1 if k¥ =K}, .

Diamonds, respectively subdiamonds, serve to define the discrete gradient, respectively the discrete
divergence operators between the spaces of discrete functions and discrete fields defined below.

- A discrete function on € isaset w* = (ww)wem* of real values. The set of all such functions is denoted by
R* . A discrete function w* is identified with = € Q+— >, .. Wi N () . Similarly, a discrete function on
Q, w® €R" ,isaset (wK*)K* o If the components of w, with k= € 99M* are zero, we write w® € R .
- A discrete field on Q is a set Fs = (ﬁD)DEQ
Fs := F, . The set of all discrete fields is denoted by (R2)® |, and identify F* with z € Q+— 3

in R?. If a subdiamond s is included into D, we set
Foll, () .

DED

On R7, resp. on (R?)?, define the scalar products

[w™, v*] = Z VOI(K* ) W Ver respectively {.7:"’3, g"f} = Z Vol(D) Foy - G,

K*em* DE®

- Define the discrete gradient operator V* and the discrete divergence operator div® :

RT — (R?)® where the value V,wT is reconstructed by formulae (2),(1)

\VARE W s (V) from the values uf = wys, ..., uf = wyr of w*
D

. s * _ . *
pen’ at the vertices 2] = zy;, ..., 4f = xy of 0 = D, with 27, = aj,.

(R2)® — RT where the entries vy of the discrete function diveF* are given by
.2 K 1 K2,
Y miFe (F)S A= s Y (1) (B G i )-

sev*(K*) - VOI(K*) sEV*(K*)

div® :

.FT — (’UK*)K*ES:H*, Vo](K*)

Here we mean that each s in v*(k*) is of the form s7;,; ; the notation € , a,;, under the sign “ 3"

refers to s7;;; . This formula corresponds to the standard finite volume (i.e. based upon Stokes’ formula)
discretization procedure on 9M* . The Value Vol(K*) v s the flux of the vector field F* through the
boundary Ok* , thus it represents fK* div F* . Indeed, thanks to the constraint 2} € D, whenever x,« is a
vertex of DD s, the vector (fl)els(* fie is the normal vector to oy C Ok* exterior to k* . The formulae for

VE,div® work also when ) & D ; one just need to consider subdiamonds of signed area, as in (1). This allows
to use e.g. the mesh T = (D, M*) consisting of a Delaunay triangulation © with its Voronoi dual mesh 2t* .

PROPOSITION 4 (d = 2) The discrete divergence and gradient operators div®, V= defined above are linked
by the following duality property :

VuT eRE VFT e (RY)® [[— div [F7], wTH - {{ﬁf : v‘fuﬁ}}. (3)




While property (3) is well suited for the study of diffusion problems by variational techniques, in the entropy or
renormalized solutions setting it is not enough. Indeed, if we work with “nonlinear” test functions of the unknown
solution (e.g., sign (u® — k) , or the “truncations” Ty (u*) ), we need the “entropy dissipation” inequality (4)
stated below. We are able to show it in the case 9* is “orthogonal”. More exactly, we ask that each diamond
cell p admits a circumcircle, and 2}, € D is its centre (thus 2* is the Voronol dual mesh of © ).

For A : R +— R and a discrete function u® with entries u, , denote by A(u¥) the discrete function
with the entries A(ug). For o € LY(Q), denote by ¥ the discrete function on Q with the entries

Ve Volw)fx*w’K*em*

PROPOSITION 5 (d=2) Let 9* be an orthogonal mesh in the above sense.
Let u® € R§ be a discrete function, and G* € (R?)® be a discrete field. Let 1 € D(Q ) P > 0.

Let S : R — R be a bounded non-decreasing function, and S fo S’
Let A : R — R be a non-decreasing continuous function; set Ag: (r fo S'(s (s)
(e.g. in the case A = Id and S(r) = sign(r — k), the function Ag/(r) = |r — k| 4s the Kruzhkov’s entropy).

Assume that either S’(0) = 0, or ¢ € D(R) and max,ecom~ diam (k*) is small enough. Then

[-aiv=[lg71 via@D], 'yt | = {197 vias ), viuT )

Application ([ABK]) : [[—div(s [l Vru§|(p72) VeuT] , sign® (u®—k) 1/JTH > {{| Vzu§|(p72) Vq(uf—k)+ , V‘:w?}

“DoUBLE” 3D FINITE VOLUME SCHEME WITH THE DISCRETE DUALITY

- A “double” finite volume mesh of a bounded polyhedre 2 C R? is a triple T = (ﬁ,%,@) . Here
T = MUIM, M is a partition of Q in tetrahedra k , called primal volumes. We call 99 the set of
all faces of volumes that are included in 0f2 . These faces are considered as boundary volumes. For K € 09 ,
we choose a centre z, € k . The set of vertices of all volumes k € 9 is denoted by (2 ),c5 ; these are
the centres of dual volumes.

-If K, K, € 9 have a common face, we denote it by Kk, . Each face is supplied with a centre Troirg
assumed, for the sake of simplicity, to belong to Kylrg . If x4+, z,« are neighbour vertices of KylKg , then -
is the middlepoint of [z, 2;-]; K7* is the common boundary of the dual volumes with centres -,z .

- Now, 9* is the dual mesh of 9t such that the dual volume k* with centre z, has its vertices in the set
(k) U (g ) rp U (g ) e (see [H2]). We write x4 € 0Q if x* € 09, and k* € M* otherwise.

- A couple of neighbours {k,,Kg} define an (oriented) diamond p = p*© e . This is the convex hull of
xK® ) T and Kglkg . The set D of all diamonds is a partition of Q. In an oriented diamond p*e¥e |
eKQ re 1S the umit vector pointing from =, to g ; 7igyk, is the unit normal vector to KolKs such that
nK®|K® €xois > 0. This induces an orientation in the triangle K|k, (see Fig.3). We denote by Proj, ,
Proj%, the orthogonal projectors of R? on the line <¢, Kook > » Tesp. on the plane containing K|k
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Figure 3: 3D neighbour volumes, diamond, subdiamond. = Zoom on a subdiamond.



KolKg
1S
KK

the convex hull of T Trgys Trolg  aNd of the neighbour vertices Ticr, T, of K|k . Whenever a diamond
p¥el¥e g fixed, we use a simplified notation, as shown in Fig.3. Notations v(k) , resp. v*(kx*) stand for the

sets of all subdiamonds intersecting K , resp., k* . Further, for s = S?Q“;;@ we define
7L

x| 0, if Kk = Ky w0, if K =K
T, if Kk =Ky ’ T\ L ik :

- As in 2D, each diamond p*e¥e is split into [ = 3 subdiamonds; a generic subdiamond s = s

) =Kin

We define similarly the spaces R¥, and (R®)®; the appropriate scalar product on R¥ is now

[w™, v*] == % ZVOI(K) WrVk+ ; Z VoI(K*) Wi Ve

Kem K*€om*

The discrete gradient VwT € (R?)® is defined by its entries: for p = pXolKe,

. T — N . .
Proj,(Vow®) = wf@ ;@ oy With wy =wx,, Ws =Wy ;

Vow* is s.t. Proj ( Vow®) is the vector defined by formulae (2), (1) ()

. * e A-d k. *
with v} = wpe, T =15 o, Ty = T34

In a sense, the primal (resp., dual) mesh yields % (resp., % ) of the components of V,w® (like in [[-, ]] ).

The discrete divergence div: F* € R is defined by its entries as follows:

_ 1 K 2 N w wa
V= 2Vol(x) ZSEV(K) (_1) S <-7{.97$®,®$i’i+17 T; Ty >7 (6)

K = P —
Uper= 2VO}(K*) Zsew(m) (_1)65 <]:Sa$@x®7x®*,®x:i+1 >

As in 2D, (6) comes by calculation from the finite volume (Stokes’-formula based) discretization on 9T, 9* .

PROPOSITION 6 (3D analogue of Propositions 4,5)
(i) With the above definitions, the discrete duality property (3) holds.
(ii) Further, assume that x, is the centre of the circumscribed ball of K and Ty u, is the

one of the circumscribed circle of KK (in which case M* is the Voronoi mesh dual to OM).
Let A, S,G*,¢,u* be as in Proposition 5. Then the discrete entropy dissipation inequality (4) holds.

A DDFV SCHEME FOR APPROXIMATION OF ENTROPY SOLUTIONS OF A NONLINEAR CONVECTION-DIFFUSION PROBLEM

In [ABK], we treat the “doubly nonlinear” problem { Oru + div ?(u) —divd(Vw)=f, w=A(u) inQ=(0,T)x 9, ™
ulg=0 =upin Q, w=0o0nX = (0,T) x 99,

with bounded data wug, f . The function d:RY — R | taken under the form &(¢) = k(|¢|)¢ , is assumed to be of the Leray-Lions

kind (i.e., divd(V:) acts from Wol’zl7 into W—1?’ ). The nonlinearity A(-) is assumed continuous non-decreasing (it thus can

degenerate, so that (7) is of hyperbolic-parabolic type). The convection flux function ?: R — R? is assumed merely continuous.

We combine a finite volume discretization in space (2D, as in [ABH] / 3D, as described above) on the orthogonal “double” mesh
with the time-implicit discretization in time with step At . The diffusion term at the time nAt is discretized under the form
—div®d( VFw™T) , with the notation above; here uw™T € Rg is the unknown solution at time nat, and w™T = A(u™T) .
A term penalizing the differences (wx — wgx) for KN K* # @ is added in order to enforce the convergence of the functions
wh M =3 o Alu) w™ ™ = >t eomr AU ) g+ to the same limit. The convection term is discretized in the usual
way (see [EGHM)] and references therein). We adapt the associated “weak BV” techniques to the non-Lipschitz case, and obtain
an analogue of the entropy dissipation property of Proposition 5 for the convection terms. The scheme converges to the entropy
solution of (7) in the sense of J. Carrillo (see [EGHM]). Formulae (3),(4) are essential; other tools come from [EGHM, DO, ABH].

EGHM] Eymard, Gallouét, Herbin, Michel — Num.Math., 2002
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