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Objectives and motivations

Work on the constraint of free divergence with penalty methods

•How to deal efficiently with the free-divergence constraint with split-
ting methods (prediction-correction steps) ?

•Overcome the major drawbacks of the projection methods including
a scalar correction step of the Lagrange multiplier with a solution
of a Poisson-type equation [Guermond et al., CMAME 06 -

Jobelin et al., JCP 06]:

– Time order of the splitting error ?
i.e. error between the numerical solutions of the implicit (or semi-
implicit) method and the fractional-step method

– Spurious B.C. for pressure: ∇φ· n = 0 on ΓD, φ = pn+1 − pn

⇒ existence of an artificial pressure boundary layer in space

– Open boundary conditions: φ = 0 on ΓN
⇒ convergence in time and space spoiled for outflow B.C.:

splitting error varying like O(δt
1
2) (pressure) and no more negligi-

ble (for both velocity and pressure) with respect to the time and
space discretization error

– Pressure-correction step strongly dependent on density and visco-
sity for non-homogeneous flows
⇒ very poor convergence for large ratios of ̺ ∼ 103.

Example of flow models with the pressure field as Lagrange multiplier
⇒ solution of unsteady incompressible Navier-Stokes problems with
the primitive variables (velocity and pressure): ∇· v = 0
⇒ solution of magnetohydrodynamics (MHD) problems: ∇· B = 0

A new family of vector penalty-projection

methods: two-step penalty methods

The two-parameter family of (VPPr,ε) methods:
a family of two-step artificial compressibility methods

v0 ∈ H1(Ω)d, p0 ∈ L2
0(Ω) given, for all n ∈ N s.t. (n + 1)δt ≤ T ,



























































































































Penalty-prediction step with an augmentation parameter r ≥ 0

ṽn+1 − vn

δt
+ (vn

· ∇) ṽn+1 − 1

Re
∆ṽn+1

−r∇
(

∇· ṽn+1
)

+ ∇pn = fn+1 in Ω

ṽn+1 = vn+1
D on Γ = ∂Ω

p̃n+1 = pn − r∇· ṽn+1 in Ω

Vector penalty-projection step with a penalty parameter 0 < ε ≤ 1
(

v̂n+1

δt
+ (vn

· ∇) v̂n+1 − 1

Re
∆v̂n+1

)

−1

ε
∇

(

∇· (v̂n+1 + ṽn+1)
)

= 0 in Ω

v̂n+1 = 0 on Γ = ∂Ω

Correction step for velocity and pressure

vn+1 = ṽn+1 + v̂n+1 in Ω

ε
(

pn+1 − pn
)

+ rε ∇· ṽn+1 + ∇· vn+1 = 0 in Ω

⇒ No spurious boundary condition on pressure
⇒ No artificial pressure boundary layer

Generalization for outflow boundary

conditions

(VPPr,ε) methods for open boundary conditions on ΓN

For a given stress vector on a part ΓN of Γ = ∂Ω = ΓD ∪ ΓN :

(σ(v, p)· n)|ΓN
≡ −pn + µ

(

∇v + (∇v)T
)

· n = g

we get for the Dirichlet and Neumann velocity boundary conditions:

Penalty-prediction step:

ṽn+1 = vn+1
D on ΓD

−pn n + µn+1
(

∇ṽn+1 + (∇ṽn+1)T
)

· n = gn+1 on ΓN

Vector penalty-projection step:

v̂n+1 = 0 on ΓD

−(p̃n+1 − pn)n + µn+1
(

∇v̂n+1 + (∇v̂n+1)T
)

· n = 0 on ΓN

⇒ Original boundary conditions not spoiled through a scalar projection
step with a Poisson-like pressure correction

Generalization for non-homogeneous flows

(VPPr,ε) for incompressible and variable density flows

Advection step for density:

̺n+1 − ̺n

δt
+ ∇· (̺n+1vn) = 0

Penalty-prediction step:

̺n+1

(

ṽn+1 − vn

δt
+ (vn

· ∇)ṽn+1

)

−∇· µn+1
(

∇ṽn+1 + (∇ṽn+1)T
)

− r∇
(

∇· ṽn+1
)

+ ∇pn = fn+1

Vector penalty-projection step:

̺n+1

(

v̂n+1

δt
+ (vn

· ∇)v̂n+1

)

− ∇· µn+1
(

∇v̂n+1 + (∇v̂n+1)T
)

−1

ε
∇

(

∇· v̂n+1
)

=
1

ε
∇

(

∇· ṽn+1
)

Correction step for velocity and pressure:

vn+1 = ṽn+1 + v̂n+1

pn+1 = pn − r∇· ṽn+1 − 1

ε
∇· vn+1

⇒ Velocity correction v̂ all the more quasi-independent on the density
̺ or viscosity µ as ε → 0
⇒ We can drop these terms in practical algorithms for ε small enough

Well-posedness, stability and convergence

Theorem (Global solvability of the (VPPr,ε) method.)
With f ∈ L2(0, T ; H−1(Ω)d), v0 ∈ H1(Ω)d and p0 ∈ L2

0(Ω) given, both the prediction
and correction steps of the (VPPr,ε) method are well-posed for all δt > 0, r ≥ 0 and
ε > 0, i.e. for all n ∈ N such that (n + 1)δt ≤ T , there exists a unique solution
(vn+1, pn+1) ∈ H1(Ω)d × L2

0(Ω) to the (VPPr,ε) scheme such that:

vn+1 − vn

δt
+ (vn

· ∇)vn+1 − 1

Re
∆vn+1 + ∇pn+1 = fn+1 in Ω

(εδt)
pn+1 − pn

δt
+ ∇· vn+1 + rε∇· ṽn+1 = 0 in Ω

Theorem (A priori estimates for VPPr,ε and stability for small r ≥ 0.)
There exists K = K

(

||f ||L2(0,T ;H−1), ||v0||1, ||p0||0
)

> 0 and r0 small enough satisfy-
ing the additionnal assumption:

(Hr,ε) 4r0(Re + ε) ≤ 1, 4c(Ω)
√

Re r0ε ≤
√

δt

where c(Ω) is the Poincaré constant, such that for all r ≤ r0 we have:

(i) ||vn+1||20 + εδt ||pn+1||20 +
n
∑

k=0

δt

16Re
||∇vk+1||20

+
n
∑

k=0

(

1

4
||vk+1 − vk||20 + εδt ||pk+1 − pk||20

)

≤ K

(ii)
n
∑

k=0

δt ||pk+1||20 ≤ C

(iii)

n
∑

k=0

δt ||∇· vk+1||20 ≤ C ε.

⇒ Convergence to the Navier-Stokes problem when δt → 0 with compactness

Convergence analysis for small values of r ≥ 0

First-order analysis for practical algorithms: r small enough

Theorem (Error estimates for VPPr,ε with the Stokes problem.)
Assume (v, p) the solution of the Stokes Dirichlet problem smooth
enough in time, well-prepared initial conditions and small enough pa-
rameters such that, c(Ω) being the Poincaré constant:

(Hr,ε) 4r(Re + ε) ≤ 1, 4c(Ω)
√

Re rε ≤
√

δt, 0 < δt ≤ 1

then there exists C = C(Ω, T, Re, f ,v0, e
0, π0) > 0 such that we have

for all n ∈ N with (n + 1)δt ≤ T ,

(i) ||en+1||20 + εδt ||πn+1||20 +

n
∑

k=0

δt

Re
||∇ek+1||20 ≤ C

(

δt2 + ε2δt
3
2

)

(ii)
n
∑

k=0

δt ||πk+1||20 ≤ C
(

δt2 + ε2δt
)

(iii)
n
∑

k=0

δt ||∇· vk+1||20 =

n
∑

k=0

δt ||∇· ek+1||20 ≤ C (δt + ε) εδt2

(iv) ||∇en+1||20 ≤ C Re2
(

δt + ε2
)

.

⇒ Quasi-optimal error estimates in O(δt) for smooth solutions
⇒ ||∇· vn||L2 ≈ O(εδt)

Numerical results: Green-Taylor vortices

Navier-Stokes problems with Dirichlet B.C. on the MAC mesh
Velocity and pressure (l∞(L2) norm) errors versus time step δt
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Velocity (Left) and pressure (Right) convergence in time at
Re=100, t=10 - h=1/512, ε=1, |res|2 < 10−10

⇒ Time convergence in O(δt) – ||∇· vn||L2 = O(δt) for small r
N.B.: Stagnation threshold = space discretization error in O(h2)

Divergence (discrete l∞(0, T ; L2(Ω)) norm) versus penalty ε
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⇒ ||∇· vn||L2 = O(εδt)

Numerical results: Rayleigh-Bénard natural

convection in a differentially heated cavity

Convergence and cost of the penalty-correction step

divergence L2-norm δ versus ε (Left) and number of MILU-BiCGStab
solver iterations versus η=ε/δt (Right)
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Natural convection at Ra=105 and t=2δt with δt=1, h=1/256 –

µ=0 or 1.85 10−5 (idem) and µ=1.85 10−1

⇒ ||∇· v||L2 = O(ε) until 10−15 (machine zero)
⇒ Solution all the easier as ε → 0

Conclusion and perspectives

Vector penalty-projection methods
for incompressible and non-homogeneous flows

[Angot, Caltagirone and Fabrie, FVCA5 08 - CRAS 08]

•⇒ A general splitting approach to efficiently solve penalty problems

• The Lagrangian augmentation with r > 0 in the prediction step
plays the role of a preconditioner

• Small values of 0 < r ≤ 10−2 sufficient to get a good pressure field

• Approximate projection with a vector penalty-correction step all the
cheaper as εδt → 0

• Same convergence properties as the scalar penality-projection
method

• Vector penalty-correction step all the less dependent on density or
viscosity as εδt → 0

• L2-norm of velocity divergence as O(εδt) until machine precision
⇒ cheap method for small values of r ≤ 10−2 and ε ≤ 10−2

• Other numerical experiments: second-order methods

• Other stability analysis for Navier-Stokes problems ∀r > 0

• Other convergence analysis: outflow B.C., variable density flows

FVCA5 - June 2008


