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Objectives and motivations

Work on the constraint of free divergence with penalty methods

e How to deal efficiently with the free-divergence constraint with split-
ting methods (prediction-correction steps) 7

e Overcome the major drawbacks of the projection methods including
a scalar correction step of the Lagrange multiplier with a solution
of a Poisson-type equation GUERMOND ET AL., CMAME 06 -
JOBELIN ET AL., JCP 06]:

— Time order of the splitting error 7
i.e. error between the numerical solutions of the implicit (or semi-
implicit) method and the fractional-step method

n

— Spurious B.C. for pressure: Vo-n=0onI'p, ¢ = pttl—p
= existence of an artificial pressure boundary layer in space

— Open boundary conditions: ¢ =0 on ['y
= convergence in time and space spoiled for outflow B.C.:
splitting error varying like (9(515%) (pressure) and no more negligi-
ble (for both velocity and pressure) with respect to the time and
space discretization error

— Pressure-correction step strongly dependent on density and visco-
sity for non-homogeneous flows
= very poor convergence for large ratios of o ~ 10°.

Example of flow models with the pressure field as Lagrange multiplier
= solution of unsteady incompressible Navier-Stokes problems with
the primitive variables (velocity and pressure): Vv = (

= solution of magnetohydrodynamics (MHD) problems: V- B = (0

Generalization for non-homogeneous flows

(VPP, ;) for incompressible and variable density flows

Advection step for density:
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Penalty-prediction step:
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Vector penalty-projection step:
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Correction step for velocity and pressure:
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= Velocity correction v all the more quasi-independent on the density
0 or viscosity u as € — 0
= We can drop these terms in practical algorithms for € small enough

Numerical results: Green-Taylor vortices

Navier-Stokes problems with Dirichlet B.C. on the MAC mesh
Velocity and pressure ({°°(L?) norm) errors versus time step ot
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Velocity (LEFT) and pressure (RIGHT) convergence in time at
Re=100, t=10- h=1/512, e=1, |res|y < 10710

= Time convergence in O(t) — ||V v"|| 72 = O(dt) for small r
N.B.: Stagnation threshold = space discretization error in O(h?)

Divergence (discrete 1°°(0, T; L?(Q2)) norm) versus penalty &
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A new family of vector penalty-projection
methods: two-step penalty methods

The two-parameter family of (VPP, .) methods:
a family of two-step artificial compressibility methods
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[ Penalty-prediction step with an augmentation parameter r > 0
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Vector penalty-projection step with a penalty parameter 0 < e <'1
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Correction step for velocity and pressure
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= No spurious boundary condition on pressure
= No artificial pressure boundary layer

Well-posedness, stability and convergence

THEOREM (Global solvability of the (VPP,..) method.)

With f € L20,7; H ()%, v’ € HY(Q)?and p® € L3(Q) given, both the prediction
and correction steps of the (VPP, .) method are well-posed for all 4t > 0, r > 0 and
e > 0, i.e. for all n € N such that (n 4+ 1)t < T, there exists a unique solution
(vl prty e HY Q)Y x L3(Q) to the (VPP,..) scheme such that:
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I'HEOREM (A priori estimates for VPP, . and stability for small » > 0.)
There exists K = K (||f|[120.7.5-1), |[Vol|1, [Ipol]o) > 0 and ro small enough satisfy-
ing the additionnal assumption:

(H,:) 4ro(Re+¢) <1, 4e(Q)VRerge < Vot

where ¢(€2) is the Poincaré constant, such that for all r < ry we have:
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= Convergence to the Navier-Stokes problem when 0t — 0 with compactness

Numerical results: Rayleigh-Bénard natural
convection in a differentially heated cavity

Convergence and cost of the penalty-correction step

divergence L*-norm ¢ versus € (LEFT) and number of MILU-BiCGStab
solver iterations versus n=¢ /0t (RIGHT)
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Natural convection at Ra=10° and t =26t with 6t=1, h=1/256 -
11=0or 1.85107° (idem) and p=1.8510""1

= [|[V-v||;2 = O(e) until 107" (machine zero)
= Solution all the easier as € — 0

Generalization for outflow boundary
conditions

(VPP, o) methods for open boundary conditions on I"y

For a given stress vector on a part I'yy of '=00Q =T'p U 'y

(o(v,p) ), = —pn+p (VV +- (VV)T) n=g
we get for the Dirichlet and Neumann velocity boundary conditions:

Penalty-prediction step:
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Vector penalty-projection step:
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= Original boundary conditions not spoiled through a scalar projection
step with a Poisson-like pressure correction

Convergence analysis for small values of » > 0

First-order analysis for practical algorithms: r small enough

THEOREM (Error estimates for VPP, . with the Stokes problem.)
Assume (v, p) the solution of the Stokes Dirichlet problem smooth
enough in time, well-prepared initial conditions and small enough pa-
rameters such that, ¢(£2) being the Poincaré constant:

(Hre) 4r(Re+¢) <1, 4c(2)VRere < Vét, 0<dt<1

then there exists C' = C(Q), T, Re, f, vy, e 7TO> > 0 such that we have
for all n € N with (n + 1)0t < T,
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= Quasi-optimal error estimates in OQ(dt) for smooth solutions

= ||V v"||72 = O(edt)

Conclusion and perspectives

Vector penalty-projection methods
for incompressible and non-homogeneous flows
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e = A general splitting approach to efficiently solve penalty problems

e The Lagrangian augmentation with » > 0 in the prediction step
plays the role of a preconditioner

e Small values of 0 < r < 1072 sufficient to get a good pressure field

e Approximate projection with a vector penalty-correction step all the
cheaper as ot — 0

e Same convergence properties as the scalar penality-projection
method

e Vector penalty-correction step all the less dependent on density or
viscosity as €0t — 0

e L?-norm of velocity divergence as O(gdt) until machine precision
= cheap method for small values of r» < 1072 and ¢ < 102

e Other numerical experiments: second-order methods
e Other stability analysis for Navier-Stokes problems Vr > 0

e Other convergence analysis: outflow B.C., variable density flows
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