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Introduction

e Problem addressed

Address an asymptotic model for low Mach number flows:
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with velocity w, pressure p, density p, shear stress tensor 7(w),
forcing term f. p does not depend on p.

The problem is solved by a pressure correction scheme, and
discretized by a non-conforming low-order finite element
discretization.

e Difficulties we must tackle

— Build a stable approximation of the convection operator.
— Deal with open boundary conditions.

1. A finite volume result

e Continuous stabilty : kinetic equality

Let p and w be such that the mass balance holds in €2

dp
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and z be a smooth scalar function defined over €2. Then the follow-
ing stability identity holds:
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Taking z = w in (3) yields the kinetic energy conservation theorem:
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with 0 = —p Id + 2uV*u.

¢ Finite-volume counterpart of (2):
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with 0 = K|L the common face of K and L, £(K) the set of all

edges or faces of K, Q= KeM K, M a finite volume admissible
mesh, and Fy; o = —F,; 1.

e Theorem : Stability of the convection operator [4]
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holds for both centered and upwind approximations of 2.
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2. Stable approximation of the convection

operator for low order finite elements
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3. A pressure correction scheme for low
Mach number flows with open boundaries

Non-conformaing low-order finite elements:

e On quadrangles: Rannacher-Turek Q{V ¢/Py (named RT)
e On triangles, Crouzeix-Raviart PlN ¢ /Py (named CR)

Standard Galerkin is unstable !

e Build a finite volume approximation of the convective
operator such that the FV stability theorem applies

1. Approximate unsteady term in a F'V manner

— CR element: naturally diagonal mass matrix in 2D
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and g the basis function associated to the node on o.

with |Dy| = |Dg.o|+ |Dr,

— RT element: mass lumping : |Dy| = / Lo
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Cones, or “half-diamonds” for CR (left) and RT (right) elements

2. Approximate convection term in a F'V manner
Build each (pu)e such that mass balance on K ~» (5) on Dy

— CR element: natural finite element evaluation of the mass fluxes
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with z- the center of ¢
—RT element: specific interpolation |2]
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e Discrete momentum balance equation:
For 1 < <d,
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4. Numerical test : a natural convection flow with open boundaries
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(left) comput. domain, (center) streamlines and (right) isovalues of the temperature

Equations:

e low Mach number flow (1) (FE method with convection on dual mesh)

e linear convection-diffusion equation for T' (usual FV method)

Flow simulation properties:

e [deal gas law, R = 287, pg = 101325 Pa, p = p(pg, T

ov =1.6810""Pa.s, ¢y = Ry/(y — 1) with v = 1.4, Pr = 0.7, Ra = 10°
Boundary conditions:

¢ 0p: u=0,T=900°C, g, and Hlg: u-n=0, VI -n=0

o 98} o outflow: T(u)n —pn =0, VI'-n =0

® 9( ) inflow: artificial boundary condition (6) with faq = 0, T' = 300° C.
Results:

e The flow enters the domain on almost the whole boundary.

e For computations with Ra = 107 and 10%, no instability was seen.

e Computations with a larger domain ~~ remarkable agreement with initial results.

e Projection method

1. Velocity prediction step:
Find "t € W), such that, Yo € Wy,:
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with the discrete divergence operator:
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2. Standard algebraic projection step

e What could be a suitable condition for the inflow bound-
aries where the velocity is not prescribed?

The boundary condition must not lead to an unstable problem.
~- following energy estimate:
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By the stability theorem, we get for T’ g;{ L.
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Taking the following artificial boundary condition on edges where
the velocity is not prescribed
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e In practice, on o:

—do not compute the integrals involving the stress tensor and the
pressure
— divide the convection term by 2

—add the integral of fyq - v over o
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