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Compressible flows with shock solutions are encountered in a wide variety of  
situations, from aeronautics to power generation industry. It is well known that Godunov- 
type methods provide very good approximations for such flows ([6], [7] for example). 
However, some existing industrial software that are based on pressure correction methods 
may have to deal with such configurations. Two pressure correction schemes are  
considered ([1] and [10], [8]). We show numerically on several academic test-cases that 
they can capture the exact shock solutions of Euler equations provided conservativity in 
time and space is ensured (see also [5] and [9]). We finally compare the pressure  
correction schemes to the approximate Godunov scheme VFRoe-ncv [2] on a test-case with 
a strong local and constant heat source term. This test-case, for which no analytical  
solution is available, represents the Joule effect due to an unwanted electric arc in an 
electrical power transformer (see [3]). If conservativity is ensured, all schemes converge 
towards the same solution as the mesh is refined.

Numerical Modelling of Compressible Flows Using 
Pressure-Correction Algorithms

We consider a contact discontinuity, the Sod shock tube, a double expansion, a 
double shock and a sonic shock tube. The behaviour of so-called first order 
schemes is recovered ([4]): NLK operated with a sufficient number of subcycles 
and SLK both capture the exact solution computed following [11]. We outline that 
NLK operated with too few subcycles is no more conservative in time and does not 
converge towards the exact solution for cases involving a  shock. 
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Analytical test-cases without heat source term

System of equations

At each time step, the algorithm solves system (1) in three steps with sub-iterations:
Fig. 1: evolution of the L1-error for the density on the analytical test-cases without 
heat source term. Plots show the behaviour for SLK (left) and for NLK with 
kmax =20 and mmax =1 (right).

Fig 2: density profile for the sonic  
shock tube [12] calculated with SLK 
on different meshes. No spurious 
phenomenon is observed at the 
location of the initial discontinuity.

An iterative pressure-correction algorithm: NLK

We consider the Euler equations with perfect gas thermodynamics under form (1) or (2):

(2)(1)

Velocity prediction 
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Update density

Stopping tests for k-cycles: discrete mass equation is satisfied
for m-cycles: discrete divergence of is unchanged

Update velocity, mass flux, density

Update mass flow rate for next m iteration
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Conservativity in time is ensured at convergence of the m- and k-cycles since:

At each time step, the algorithm solves system (2) in three steps without sub-iteration:

A non iterative pressure-correction algorithm: SLK

Density step

Update the convective mass flux

Update the pressure

Velocity step

Energy step

Conservativity in time is ensured thanks to the definition of the convective mass flux.

Conservative Non conservative

Test-case with a constant heat source term

Fig 4: illustration of the profiles of the 
density, velocity, pressure and energy 
obtained for the test-case with a constant 
heat source term. 

Fig 3: evolution of the L1-difference to  
VFRoe-ncv for the density (test-case with 
a constant heat source term). 
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