

BENCHMARK OF ANISOTROPIC PROBLEMS THE DDFV AND M-DDFV SCHEMES

Franck Boyer and Florence Hubert

Laboratoire d'Analyse Topologie et Probabilités (UMR CNRS 6632), Marseille, France. {fboyer,fhubert}@latp.univ-mrs.fr

Description of the scheme	Results for Test 1.1	Results for Test 1.2
• The diffusion problem $-\operatorname{div}(\mathbf{K}(x)\nabla u) = f$. • The DDFV Meshes	umin = 0.0, umax = 1.0. \bullet Triangular mesh mesh1 $\rightsquigarrow \texttt{ocvl2} = 1.99, \texttt{ocvgradl2} = 1.00.$	umin= 0.0, umax=1 + sin(1), $x_{\mathcal{K}}$ = circumcenter. • Triangular mesh mesh1 \rightsquigarrow ocvl2= 2.00 ocvgradl2= 1.00
	$x_{\mathcal{K}} = \underbrace{\text{circumcenter}}_{\mathbf{k} \in \mathbb{C}^{+}} \underbrace{\text{uminv}}_{\mathbf{k} \in \mathbb{C}^{+}} \underbrace{\text{uminc}}_{\mathbf{k} \in \mathbb{C}^{+}} \underbrace{\text{uminc}}_{k$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Δ Primal mesh Dual mesh	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ierflx0erflx1erfly0erfly1erflmuminvumaxvumincumaxc13.46E-044.31E-033.28E-031.19E-021.67E-010.001.842.93E-031.46E+0021.12E-041.19E-039.94E-043.48E-039.37E-020.001.847.25E-041.64E+0032.86E-053.13E-042.96E-041.00E-034.94E-020.001.841.80E-041.74E+0046.46E.068.07E.058.67E.052.83E.042.54E.020.001.844.51E.051.70E+00

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	• Solution on r i=
• $\delta = 10^6 \rightsquigarrow \text{ocvl2} = 2.11$, $\text{ocvgradl2} = 1.35$. $\frac{i nunkw nnmat sumflux erl2 ergrad ratiol2 ratiograd}{1 93 877 5.62E-09 3.32E-01 4.30E-01 1.59 1.43 \\ 3 1377 12577 1.47E-10 3.54E-02 6.43E-02 1.73 1.39 \\ 4 5441 49345 -9.84E-09 9.73E-03 2.42E-02 1.88 1.42 \\ 5 21633 195457 -2.52E-07 2.48E-03 8.96E-03 1.98 1.44 \\ 6 86273 777985 -3.20E-07 5.88E-04 3.33E-03 2.08 1.43 \\ 7 344577 3104257 2.47E-06 1.36E-04 1.30E-03 2.12 1.36 \\ \hline 1 4.03E-12 1.86E-06 -3.82E-10 -2.96E-01 1.77E+03 -0.997 1.040 -0.917 1.194 \\ 2 1.01E-12 1.19E-07 -1.97E-09 -1.89E-02 4.42E+02 -0.999 1.018 -0.987 1.019 \\ 3 2.52E-13 9.98E-09 2.76E-10 -1.59E-03 1.38E+04 -0.997 1.005 -0.996 1.005 \\ 5 1.58E-14 3.65E-10 -4.08E-09 -5.86E-05 3.00E+01 -0.999 1.001 -0.999 1.001 \\ 6 3.94E-15 2.09E-10 1.71E-09 -3.37E-05 1.51E+01 -1.000 1.000 -0.999 1.000 \\ 7 9.85E-16 1.22E-10 -5.09E-09 -1.70E-05 1.38E+01 -1.000 1.000 -0.999 1.000 \\ \hline \end{array}$	\Rightarrow Problem w
\Rightarrow Maximum principle is violated on both centers and vertices	\Rightarrow Good agree third refine
Results for Test 5: Heterogeneous rotating anisotropy	• Test 6 Obli

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	nunkwnnmatsumfluxuminvumaxvumincumaxcDDFV mesh524119933.26E-14-1.000E-081.0004.245E-020.962DDFV reg8417237-1.05E-130.0001.0002.088E-020.981DDFV ref2054411843837-7.50E-120.0001.0001.317E-030.998m-DDFV mesh524119935.29E-14-1.000E-081.0004.038E-020.961m-DDFV reg84172372.27E-130.0001.0001.986E-020.982m-DDFV ref20544118438371.66E-110.0001.0001.315E-030.998
Solution on mesh2_i	DDFV mesh5 -41.2 43.7 -2.54 6.74E-03 39.4 42.1 6.39E-02 DDFV reg -41.7 43.9 -2.20 6.98E-04 42.2 42.6 1.09E-02 DDFV ref -42.1 44.4 -2.32 7.84E-04 43.2 43.2 1.35E-04 m-DDFV mesh5 -40.0 41.8 -1.81 9.08E-04 42.18 40.64 3.653E-02
i=2 i=3 i=4	m-DDFV reg m-DDFV ref-39.942.0-2.688.01E-0443.2341.045.076E-02m-DDFV ref-42.144.4-2.337.97E-0443.2343.181.279E-03
	\bullet m-DDFV solutions for the vertical fault on the meshes:
	mesh5 mesh5_reg mesh5_ref
Problem with Maximum Principle.	
Good agreement with the expected results after the third refinement.	\Rightarrow Good behaviour of the m-DDFV scheme even on coarse meshes
Results for Test 6 and Test 7	Results for Test 8 and Test 9
Test 6 Oblique drain, $umin = -1.2$, $umax = 0$, coarse (C) and fine (F) oblique meshes, mesh6 and mesh7	• Test 8 Perturbed parallelograms mesh mesh8. umin = 0.0, $umax = 1.0$.

urbed parallelograms mesh mesh8. umin = 0.0, umax = 1.0.

\rightarrow ocvl2= 2.00, ocvgradl2= 1.95.	
i nunkw nnmat sumflux erl2 ergrad ratiol2 ratiograd	
1 41 293 -8.88E-16 2.12E-02 2.57E-02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
6 33025 295165 -5.68E-14 1.51E-05 3.42E-05 2.01 1.96	
7 131585 1180157 6.22E-14 3.78E-06 8.83E-06 2.01 1.96	
i erflx0 erflx1 erfly0 erfly1 erflm uminv umaxv uminc umaxc	
1 1.93E-02 1.05E-03 1.93E-02 1.05E-03 1.38E-01 0.000 0.997 1.360E-01 0.870	• Test
2 6.41E-03 6.94E-04 6.41E-03 6.94E-04 5.29E-02 0.000 1.000 3.475E-02 0.965	1.1:
3 1.98E-03 2.09E-04 1.98E-03 2.09E-04 2.79E-02 0.000 1.000 8.735E-03 0.991	ODIIQ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
6 4.84E-05 3.54E-06 4.84E-05 3.54E-06 3.55E-03 0.000 1.000 1.367E-04 0.999	
7 1.35E-05 8.87E-07 1.35E-05 8.87E-07 1.78E-03 0.000 1.000 3.418E-05 1.000	
\Rightarrow No problem of Maximum Principle. \Rightarrow Second order of convergence of the gradient in L^2 norm.	
	\Rightarrow The
	tost
	test

nunkwnnmatsumfluxerl2ergradDDFV - C45238081.87E-141.17E-031.32E-02DDFV - F5124348-9.06E-141.23E-031.33E-02m-DDFV - C4523808-4.92E-145.45E-163.88E-15m-DDFV - F5124348- 3.71E-141.19E-156.77E-15	nunkw nnmat sumflux uminv umaxv uminc umaxc 265 2197 1.39E-09 -7.755E-05 4.568E-02 -1.257E-03 8.220E-02 flux0 flux1 fluy0 fluy1 -5.814E-10 -3.357E-10 4.972E-01 5.028E-01
$\frac{\text{erflx0} \text{ erflx1} \text{ erfly0} \text{ erfly1} \text{ erflm} \text{ uminv} \text{ umaxv} \text{ uminc} \text{ umaxc}}{\text{DDFV} - \text{C} 1.23\text{E} \cdot 03 1.23\text{E} \cdot 03 4.27\text{E} \cdot 06 4.27\text{E} \cdot 06 1.47\text{E} \cdot 01 - 1.200 0.000 - 1.146 - 5.385\text{E} \cdot 02}{\text{DDFV} - \text{F} 1.15\text{E} \cdot 03 1.15\text{E} \cdot 03 1.44\text{E} \cdot 05 1.44\text{E} \cdot 05 1.54\text{E} \cdot 01 - 1.200 0.000 - 1.146 - 5.385\text{E} \cdot 02}{\text{m} \cdot \text{DDFV} - \text{C} 1.64\text{E} \cdot 15 6.72\text{E} \cdot 15 1.25\text{E} \cdot 15 1.39\text{E} \cdot 15 8.53\text{E} \cdot 13 - 1.200 0.000 - 1.146 - 5.385\text{E} \cdot 02}{\text{m} \cdot \text{DDFV} - \text{F} 1.19\text{E} \cdot 15 5.08\text{E} \cdot 15 1.39\text{E} \cdot 16 1.11\text{E} \cdot 15 2.25\text{E} \cdot 12 - 1.200 0.000 - 1.146 - 5.385\text{E} \cdot 02}}$ Test 7 Oblique barrier, min = -5.575 , max = 0.575 , coarse oblique mesh mesh6	 Test 9 Anisotropy with wells. Square uniform grid mesh9. umin= 0, umax= 1.0. <u>nunkw nnmat sumflux uminv umaxv uminc umaxc</u> <u>265 2509 1.02E-15 -1.585E-01 1.083E+00 -1.389E-01 1.138E+00</u> Solutions of Test 8 (left), Test 9 (right)
nunkw nnmat sumflux erl2 ergrad DDFV 452 3808 - 1.24E-14 1.87E-02 4.31E-02 m-DDFV 452 3808 -2.03E-14 1.38E-14 5.86E-14 m-DDFV 452 3808 -2.03E-14 1.38E-14 5.86E-14 DDFV 1.63E-01 1.63E-01 1.74E-01 9.35E-01 -5.575 0.575 -5.538 0.537 m-DDFV 5.69E-15 1.94E-15 5.33E-15 2.41E-14 3.55E-13 -5.575 0.575 -5.537 0.536	Distorted quadrangle mesh8
The m-DDFV scheme gives the exact solution in both test 6 and 7.	Regular fine quadrangle mesh 201×201 \Rightarrow Positivity and Maximum Principle violated.