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Mimetic Finite Difference Method

THE mimetic finite difference (MFD) method mimics the under-
lying properties of the original continuum differential equa-

tions such as conservation laws, symmetries, monotonicity of
solutions, and the fundamental identities and theorems of vec-
tor and tensor calculus.
Define the space N of node-based unknowns (nodal values of
scalar functions), the space E of edge-based unknowns (tan-
gential components of vector functions), the space F of face-
based unknowns (normal components of vector functions), and
the space P of element-based unknowns (mean values of scalar
functions). Then,
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The MFD method uses first principle (e.g. the divergence
and Stokes theorems) to approximate the primary operators
(GRADh, CURLh, and DIVh) and then builds the correspond-

ing derived operators (D̃IV
h
, C̃URL

h
, and G̃RAD

h
) using dis-

crete analogs of Green theorems. For instance,
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where |E| is the volume of element E, |f | is the area of face
f , uh

f is the average flux through f , and matrix MX defines an
inner product on space X.

MN and MP are relatively easy to build.

MF and ME are hard to build for general meshes.

MX is assembled from elemental matrices MX,E.

Material properties are blended into construction of MX,E.

Steady Diffusion Equation

CONSIDER the steady diffusion equation with a full tensor K,

div ~u = Q, ~u = −K∇ p,

subject to appropriate boundary conditions. The MFD method
is to find pressure ph ∈ P and velocity uh ∈ F such that

DIVhuh = Qh, uh = −G̃RAD
h
ph.

The MFD discretization...
is locally conservative;

is 2nd-order accurate for ph (element-based unknowns), at
least 1st-order accurate for uh (face-based unknowns) [3];
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Figure 1: The polyhedral mesh has three spherical layers of
prisms. The second-order convergence for ph is achieved for
both isotropic and anisotropic (103) diffusion tensors.

naturally accommodates a full diffusion tensor;

allows arbitrary meshes (unstructured, polyhedral, AMR, gen-
eralized polyhedral, with non-convex elements);

does NOT require subdivision of elements into simplexes,
contrary to the Kuznetsov-Repin FE method;

can be implemented on polyhedral meshes in exactly the
same manner as on tetrahedral meshes [1, 2];

results in an algebraic problem with the symmetric positive
definite matrix.

Generalized Polyhedral Meshes

Apolyhedron is a three-dimensional solid
bounded by a collection of polygons,

usually joined at their edges. A generalized
polyhedron is a topological polyhedron. Its
faces are non-planar.

The generalized polyhedral meshes appear in moving mesh
(Lagrangian, ALE) methods, in methods fitting a mesh to curved
material interfaces, etc.

The MFD method uses three degrees of freedom on a
strongly curved face to approximate velocity uh.

Continuity of a full velocity vector on strongly curved faces is
required for method convergence [3].

The developed theory predicts the second-order convergence
rate for ph and the first-order for uh.

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

10
0

h

m
es

h 
L 2 n

or
m

 o
f e

rr
or

MFD: pressure
MFE: pressure
MFD: velocity
MFE: velocity

Figure 2: A part of a logically cubic mesh with randomly per-
turbed interior nodes. The graphs show optimal convergence
rates for the MFD method with three flux unknowns per strongly
curved mesh face (red), and lack of convergence for the mixed
finite element with one flux unknown (blue) method.

Inner Product Matrix MF

A family of inner product matrices MF does exist (e.g., a 6-
parameter family for hexahedral meshes) [1]. This family

can be analyzed to tackle other computational problems such
as monotonicity and optimal accuracy for a fixed mesh.
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The unknowns are defined by
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polyhedron with k faces, we assume that the following linear re-
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are exact for any linear function p and the corresponding con-
stant vector ~u. There are four linearly independent functions p:

1. p(x, y, z) = 0 and ~u = −KE(0; 0; 0)T (the formula is trivial);

2. p(x, y, z) = x and ~u = −KE(1; 0; 0)T ;

3. p(x, y, z) = y and ~u = −KE(0; 1; 0)T ;

4. p(x, y, z) = z and ~u = −KE(0; 0; 1)T .

The non-trivial cases give three matrix equations

nα = WF ,E rα, α = x, y, z.
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Then, RTN = NTR = |E|KE. Furthermore, let the columns of
matrix C span ker(RT ), i.e. RT C = 0. Then

WF ,E =
1

|E|
NK−1

E NT + C U CT

defines an inner product on E for any U = UT > 0.

Matrix U can be replaced by a scalar matrix uEI and C CT can
be computed without explicit construction of C [1]:
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1

|E|
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E NT + uE

(

I− R
(

RTR
)−1

RT
)

,

where uE = trace(KE)/|E|.

A similar formula holds for MF ,E. However, the diffusion
solver needs only WF ,E.

Only areas, normals, and mass centers of faces of E are re-
quired to compute WF ,E and MF ,E. Shape-regularity affects
constants but not the order of convergence of the method.

The complexity of building WF ,E is

(2d + 1)k2 + 4d2k flops, d = 2, 3.

Extension to generalized polyhedra has been made in [2].

Multi-point Flux MFD Method

AMULTI-POINT flux version of the MFD method results in a
symmetric scheme with a local expression for flux uh

f . This
is achieved by enforcing a sparsity structure of the matrix MF ,E.
This implies that the discrete elliptic operator

Lh = DIVh G̃RAD
h

has a local stencil.

Figure 3: Velocity degrees of freedom are marked by solid cir-
cles. Red lines show non-zero off-diagonal entries of matrix
MF ,E. Left picture shows the stencil of Lh for the pressure un-
known marked by the black square.

Optimal error estimates has been proved for simplicial
meshes and full diffusion tensors [4].

Extension to polyhedral meshes results in lose of symmetry.
However, optimal convergence estimates can be proved for a
class of meshes [4].

2D Tensor Viscosity Method

ONE of the applications of the developed MFD methods is the
tensor viscosity method for a gasdynamics. A dissipative

term added to the momentum equation is

ρ
∂~u

∂t
= −∇p + div (µ(~u)∇~u).

The primary operator, gradient GRADh, is defined on mesh

edges. The derived operator is D̃IV
h
:
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In two-dimensions, the inner product matrix ME is known:

ME = MF .

New method provides more accurate nodal viscous forces for
non-convex mesh elements.

Figure 4: The Sedov explosion problem: a high energy gas is
released in a cold gas at point (0, 0). The density profiles at 0.3s
and 0.7s illustrate propagation of a shock wave. Lagrangian
simulation without artificial viscosity fails at 0.1s.
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