A Collocated Finite Volume Scheme for the

Incompressible Navier-Stokes Equations on General

Non-Matching Grids

Eric Chénier¹, Robert Eymard¹ & Raphaèle Herbin²,

¹Université Paris-Est, Marne-la-Vallée, France - ²Université de Provence, Marseille, France {eric.chenier, robert.eymard}@univ-paris-est.fr, herbin@cmi.univ-mrs.fr

1. Objectives of the work

Actual problems

- realistic domains are not shoe boxes,
- no general tools for the meshing of complex 3D domains using Voronoï or Delaunay tessellations,

$$K \in \mathcal{M}, \sigma \in \mathcal{E}, \boldsymbol{x}_{K} \in \mathcal{P}$$

interior face: $\sigma \in \mathcal{E}_{int}$
 $\mathcal{M}_{\sigma} = \{K, L\}, \boldsymbol{x}_{\sigma} = \sum_{K} a_{\sigma}^{K} \boldsymbol{x}_{K}, \Pi_{\sigma}(u) = \sum_{K} a_{\sigma}^{K} u_{K}$
boundary face: $\sigma \in \mathcal{E}_{ext}$
 $\mathcal{M}_{\sigma} = \{K\}$
Discretization of viscous terms

4. Numerical validation

Use of scalable linear solvers package HYPRE [1] with a preconditioning based on *Euclid*.

Geometry and meshes

- generalized hexahedric meshes often used,
- full stress tensors (compressible flows),
- mesh refinement for boundary layers ~> non matching grids.

Drawbacks of the usual schemes for diffusion on general meshes

• non-local stencils,

- cell-centred or face-centred unknowns,
- energy balances not respected,
- no theoretical convergence property,
- no accuracy on some particular grids,
- no "M-matrix".

A new scheme for the Navier-Stokes equations on general meshes

• collocated cell-centred scheme with local stencil,

• s.d.p. matrices for the diffusion operator,

- mathematical convergence properties,
- numerical preservation of the maximum principle in 3D,
- discrete kinetic and energy balances,
- local pressure stabilization.

2. Continuous formulation

Strong formulation

$$\boldsymbol{\nabla}_{K} \boldsymbol{u} = \frac{1}{\mathrm{m}_{K}} \sum_{\sigma \in \mathcal{E}_{K}} \mathrm{m}_{\sigma} (\boldsymbol{u}_{\sigma} - \boldsymbol{u}_{K}) \boldsymbol{n}_{K,\sigma}$$

$$R_{K,\sigma} \boldsymbol{u} = \frac{\sqrt{d}}{d_{K,\sigma}} (\boldsymbol{u}_{\sigma} - \boldsymbol{u}_{K} - \boldsymbol{\nabla}_{K} \boldsymbol{u} \cdot (\boldsymbol{x}_{\sigma} - \boldsymbol{x}_{K}))$$

$$\boldsymbol{\nabla}_{K,\sigma} \boldsymbol{u} = \boldsymbol{\nabla}_{K} \boldsymbol{u} + R_{K,\sigma} \boldsymbol{u} \, \boldsymbol{n}_{K,\sigma}$$

$$\boldsymbol{\nabla}_{\mathcal{D}} \boldsymbol{u}(\boldsymbol{x}) = \boldsymbol{\nabla}_{K,\sigma} \boldsymbol{u}, \text{ for a.e. } \boldsymbol{x} \in D_{K,\sigma}, \ \forall K \in \mathcal{M}, \ \forall \sigma \in \mathcal{E}_{K}$$

mass balance Pressure-velocity coupling, and convective contributions

$$\operatorname{div}_{K}\boldsymbol{u} = \frac{1}{\operatorname{m}_{K}} \sum_{\sigma \in \mathcal{E}_{K}} \operatorname{m}_{\sigma}\boldsymbol{u}_{\sigma} \cdot \boldsymbol{n}_{K,\sigma}, \quad \forall K \in \mathcal{M}$$
$$\operatorname{div}_{\mathcal{D}}\boldsymbol{u}(\boldsymbol{x}) = \operatorname{div}_{K}\boldsymbol{u}, \text{ for a.e. } \boldsymbol{x} \in K, \; \forall K \in \mathcal{M}$$
$$\Phi_{K,\sigma}^{\lambda}(\boldsymbol{u}, p) = \operatorname{m}_{\sigma} \left(\boldsymbol{u}_{\sigma} \cdot \boldsymbol{n}_{K,\sigma} + \lambda_{\sigma}(p_{K} - p_{L})\right), \; \mathcal{M}_{\sigma} = \{K, L\}$$
$$\operatorname{div}_{K}^{\lambda}(v, \boldsymbol{u}, p) = \frac{1}{\operatorname{m}_{K}} \sum_{\sigma \in \mathcal{E}_{K} \cap \mathcal{E}_{\mathrm{int}}, \mathcal{M}_{\sigma} = \{K, L\}} \Phi_{K,\sigma}^{\lambda}(\boldsymbol{u}, p) \frac{v_{K} + v_{L}}{2}$$
$$\operatorname{div}_{\mathcal{D}}^{\lambda}(v, \boldsymbol{u}, p)(\boldsymbol{x}) = \operatorname{div}_{K}^{\lambda}(v, \boldsymbol{u}, p), \text{ for a.e. } \boldsymbol{x} \in K, \; \forall K \in \mathcal{M}$$

Choice for the parameters $(\lambda_{\sigma})_{\sigma \in \mathcal{E}_{int}}$

 \mathcal{G} partition of \mathcal{M} , $\lambda_{\sigma} = \lambda > 0$ if $\exists G \in \mathcal{G}$ with $\mathcal{M}_{\sigma} \subset G$ otherwise $\lambda_{\sigma} = 0$.

Case of an analytical solution in pure diffusion

[Enclosure	Cubic			Truncated conic	
	Meshes	cubic	smooth	random	cube-based	
	L^2 -norm	2(2)	1.96(1.97)	1.87(1.93)	2.09(2.03)	
	L^{∞} -norm	1.99(2)	1.81 (1.68)	1.74 (1.88)	1.92(1.58)	
	H^1 -norm	2(2)	1.50(1.28)	1.16(1.07)	1.55(1.48)	
Slopes of the linear approximations of convergence curves						
for $10 \le n_i \le 100$ ($50 \le n_i \le 100$).						

$ \begin{array}{c} \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
Resulting discrete equations
• $X^{\mathcal{D}} = \left\{ u \in \mathbb{R}^{\mathcal{M}} \times \mathbb{R}^{\mathcal{E}}, \ \forall \sigma \in \mathcal{E}_{\text{int}}, u_{\sigma} = \Pi_{\sigma}(u) \right\}$
• $X_0^{\mathcal{D}} = \left\{ u \in X^{\mathcal{D}}, \ \forall \sigma \in \mathcal{E}_{\text{ext}}, u_{\sigma} = 0 \right\}$
• $X_{\partial\Omega_1,0}^{\mathcal{D}} = \left\{ \theta \in X^{\mathcal{D}}, \ \forall \sigma \in \mathcal{E}_{\text{ext}} \cap \partial\Omega_1, \theta_{\sigma} = 0 \right\}$
• $\mathcal{H}_{\mathcal{M}}(\Omega) \subset L^2(\Omega)$ functions constant in each $K \in \mathcal{M}$
• $\mathcal{F}_{\mathcal{M}} : X^{\mathcal{D}} \to \mathcal{H}_{\mathcal{M}}(\Omega)$: $\forall u \in X^{\mathcal{D}}, (\mathcal{F}_{\mathcal{M}}(u))(\mathbf{x}) = u_K \text{ for a.e. } \mathbf{x} \in K, \forall K \in \mathcal{M}$
• $\mathcal{F}_{\mathcal{E}} : X^{\mathcal{D}} \to L^2(\partial \Omega)$: $\forall u \in X^{\mathcal{D}}, (\mathcal{F}_{\mathcal{E}}(u))(\mathbf{x}) = u_{\sigma} \text{ for a.e. } \mathbf{x} \in \sigma, \forall \sigma \in \mathcal{E}_{ext}$
find $\boldsymbol{u} = (u^{(i)})_{i=1,d} \in (X_0^{\mathcal{D}})^d$, $p \in \mathcal{H}_{\mathcal{M}}(\Omega)$ with $\int_{\Omega} p(\boldsymbol{x}) d\boldsymbol{x} = \sum_{K \in \mathcal{M}} m_K p_K = 0$ and $T - T_{b,\mathcal{D}} \in X_{\partial \Omega_1,0}^{\mathcal{D}}$ such that:
$\Pr \int_{\Omega} \nabla_{\mathcal{D}} \boldsymbol{u} : \nabla_{\mathcal{D}} \boldsymbol{v} d\boldsymbol{x} - \int_{\Omega} p \operatorname{div}_{\mathcal{D}} \boldsymbol{v} d\boldsymbol{x} + \int_{$

Case of an isothermal Navier-Stokes analytical solution in cubic enclosure $\boldsymbol{u}_{\text{ref}}(\boldsymbol{x}) = \boldsymbol{\nabla} \wedge \sum (4x_1(x_1-1))^3 (4x_2(x_2-1))^4 (4x_3(x_3-1))^5 \boldsymbol{e}_i,$

 $p_{\rm ref}(\mathbf{x}) = \cos(\pi x_1) \cos(\pi x_2) \cos(\pi x_3)$ and $\Pr = 1$, $\Pr = 0$.

			Cubic	Smooth	Random	
				meshes		
	L^2	$ u^{(1)} $	2(2)	1.94 (1.99)	1.82(1.95)	
		$u^{(2)}$	1.99(2)	1.96 (1.99)	1.84(1.94)	
		$u^{(3)}$	2(2)	1.95(1.98)	1.87(1.94)	
		p	2(2)	1.09(0.76)	0.85(0.93)	
	L^{∞}	$u^{(1)}$	2(2)	1.67(2.02)	1.61 (1.84)	
		$u^{(2)}$	1.75(1.78)	1.39(1.64)	1.66(1.72)	
		$u^{(3)}$	1.88(1.74)	1.55(1.59)	1.73 (1.86)	
		p	1.72 (1.93)			
	H^1	$u^{(1)}$	1.98(2)	1.80 (1.85)	1.43 (1.31)	
		$u^{(2)}$	2(2)	1.81 (1.84)	1.41(1.27)	
		$u^{(3)}$	1.95(1.99)	1.76 (1.83)	1.40(1.25)	
		p	1.91 (1.97)			
Slopes of the linear approximations of convergence curve						
for $10 \le n_i \le 60$ ($40 \le n_i \le 60$).						

Natural convection problem in a unit and differentially heated cubic enclosure

Basic notations

 $\mathcal{D} = (\mathcal{M}, \mathcal{E}, \mathcal{P})$ space discretization

 $\int_{\Omega} \operatorname{div}_{\mathcal{D}}^{\lambda}(\boldsymbol{u}, \boldsymbol{u}, p) \cdot \mathcal{F}_{\mathcal{M}}(\boldsymbol{v}) d\boldsymbol{x} - \operatorname{Ra} \operatorname{Pr} \int_{\Omega} \mathcal{F}_{\mathcal{M}}(T) \boldsymbol{e}_{3} \cdot \mathcal{F}_{\mathcal{M}}(\boldsymbol{v}) d\boldsymbol{x}$ $= \int_{\Omega} \boldsymbol{f} \cdot \mathcal{F}_{\mathcal{M}}(\boldsymbol{v}) \mathrm{d}\boldsymbol{x}, \ \forall \boldsymbol{v} \in (X_0^{\mathcal{D}})^d$

 $\int_{\Omega} \boldsymbol{\nabla}_{\mathcal{D}} T \cdot \boldsymbol{\nabla}_{\mathcal{D}} \boldsymbol{\theta} d\boldsymbol{x} + \int_{\Omega} \operatorname{div}_{\mathcal{D}}^{\lambda}(T, \boldsymbol{u}, p) \mathcal{F}_{\mathcal{M}}(\boldsymbol{\theta}) d\boldsymbol{x}$ $= \int_{\Omega} g \mathcal{F}_{\mathcal{M}}(\boldsymbol{\theta}) d\boldsymbol{x} - \int_{\partial \Omega_2} q_b \mathcal{F}_{\mathcal{E}}(\boldsymbol{\theta}) ds, \ \forall \boldsymbol{\theta} \in X_{\partial \Omega_1, 0}^{\mathcal{D}}$ $\operatorname{div}_{\mathcal{D}}^{\lambda}(1, \boldsymbol{u}, p) = 0$ a.e. in Ω

Mathematical properties

existence of discrete solution,

estimates on the kinetic energy,

• convergence of the scheme.

	∠U	-10/0	-10/0	-0.10/0	0.2370				
	30	-3.1%	-5.1%	-0.91%	0.14%				
	40	-1.6%	-2.7%	-0.91%	0.11%				
	50	-0.95%	-1.4%	-0.11%	0.086%				
	60	-0.88%	-0.93%	-0.031%	0.065%				
Random meshes									
	20	30%	340%	13%	-2.0%				
	30	9.3%	230%	1.2%	-0.88%				
	40	4.3%	81%	1.5%	-0.51%				
Relative differences to reference values ^a for $ u^{(i)} _{\infty}$									
$(i \in [1, d])$ and for the average Nusselt number									
Nu = $\int_0^1 \int_0^1 (\mathbf{\nabla} T \cdot \mathbf{n})_{x_1=0} \mathrm{d}x_2 \mathrm{d}x_3$ for $Ra = 10^7$, $Pr = 0.7$									
$\ u^{(1)}\ _{\infty} \simeq 383.8357, \ u^{(2)}\ _{\infty} \simeq 83.3885, \ u^{(3)}\ _{\infty} \simeq 768.1393, Nu \simeq 16.3427$ [2]									

References

[1] HYPRE 2.0.0, Copyright (c) 2006 The Regents of the University of California. Produced at the Lawrence Livermore National Laboratory. Written by the HYPRE team. UCRL-CODE-222953. All rights reserved.

[2] E. Tric, G. Labrosse, M. Betrouni, A first incursion into the 3D structure of natural convection of air in a differentially heated cubic cavity, from accurate numerical solutions, Int. J. Heat Mass Transfer 43 (2000) 4043–4056.