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L INTRODUCTION

RESOLUTION OF ELLIPTIC PROBLEMS ON
” ARBITRARY’ MESHES

In order to avoid orthogonality constraints, we add unknowns : the
velocity u is defined on the edges with its two components, and
the pressure p and the vorticity w are defined both on the primal

and dual cells.
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F1G.: A primal mesh and its dual mesh

Hypothesis : The primal boundary cells have only one edge on the
boundary.



PRECONDIT ; NAVIER-STOKES PROBLEM DISCRETIZED BY A FINITE VOLUME METHOD.
e

"RUCTION OF MESHES

DIAMOND MESH

F1G.: Interior and boundary diamond cells
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CONSTRUCTION DISCRETE GRADIENT OPERATOR

J LSRR .
1 e
pr —_— p n Gi2
|Dj| Jap,

and the relations in the

Using /[SG]W 15 P51+ 2(C)

triangle, we obtain the definition of the discrete gradient V2 on
Dj :

1
2|Dj]

(Vip); = {[pk, — pi] 14510 + [pf, = pl] 1A4j]n;}
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CONSTRUCTION OF THE DISCRETE DIVERGENCE
OPERATOR

Definition of the discrete divergence
on the primal cells :

1
(V] - w)i = [l > 14j] u; - ny,
JEV(3)

Definition of the discrete divergence
on the interior dual cells :

1
(Vi wg = > |A)u;-n

| Py Pt




Definition of the discrete divergence on the boundary dual cells :

1 1
(Vﬁ‘u)kﬁ:@ Z|A;‘|uj n, + Z §|Aj|uj‘nj

jeE(k) FEE(K)NOQ

We have the following discrete Green formula :

(Vi - wpP)a + (V5 - w.p")o]

N

—(u, VPp)a + (u-n,p)ag =



PRECONDITIONING NAVIER-STOKES PROBLEN SCRETIZED BY A FINITE VOLUME METHOD.
LC(J\'S'I‘l(U(,"l'I(J\I OF DIFFERENTIAL DISCRETE OPERATORS

DISCRETE CURL OPERATORS

In the same way, we define a discrete vector curl operator (acting
on a scalar) on the diamond cells :

(VR x ¢)j = — 2]D|{[¢k2 O] 1A 7] + [0, — 1] 145175}

and, a discrete scalar curl operator (acting on a vector) on the
primal and dual cells :

1
(Vi x u); = W > 1A uy T
jevi)

(Vi x w)y Z ‘A/‘ u; -

JEE(K)

1 1
1B Z\A\uj Ty + Z §|Aj|uj'7'j
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(fo u)k =
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DISCRETIZATION

We are interested in the stationary Navier-Stokes problem :

—vAu+u-Vu+Vp=£f V-u=0inQ,

u=0onT, /p:O.
Q
2

Asu-Vu= V(u?) + (V x u) u x e, using the "Bernoulli

112

pressure” m=p+ 5> we solve :

—vAu+ (Vxu)uxe,+Vr=1f, V-u=0inQQ,

u=0onT, /7r—0.
Q
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Approximation of (V x w)

I,

(V}Y; X W)il + (Vz X W)iz + (Vﬁ X W)kl + (Vﬁ X W)kz

(VXW)|Dj ~ 1

For continuous operators, —Au=V xV xu—VV -u.
Unknowns : (u, ) = (uj, 7l , 77)

v (VP x VP xu); — (VPV]DY ),

+(va)|Djujxez+(thw)j = f’, VD; ¢T
(VIiu), = 0, vI
(VP u)y, = 0, VP
u, = 0, VD;el
doITixl = > IRl = 0

i€[1,1] ke[l,K]
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L AppLr § ES PROBLEM

Existence and uniqueness of the solution (u;, 7/, 77) :
we use the essential property

u; x e, -u; =0.

~2
We can deduce (p/,pL) computing : p =7 — u—, where 1 is a
quadrature formula defined on the primal and dual cells, according
to the u; defined on the diamond cells. At last, we project the
(pL', pL’) in order to vanish the mean-value.
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L PRECONDITIONING THE LINEAR SYSTEM

PRECONDITIONING THE LINEAR SYSTEM

(Work in collaboration with Delphine Jennequin)
We are led to solve the following saddle—point problem :
%)) -C)
B 0 P g/
which is equivalent to the following system (Uzawa method) :

Au+BTp = F
—BA™'BTp = ¢g—BA'F
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NDITIONING THE 1

Preconditioning the Schur complement :
S=-BA-1BT.
Elman (1996) proposed (for the finite elements) to take :
St~ —(BBT)"Y(BABT)(BBT)!.
There exists also another formulation with weights :
St~ —(BM;'BY)"Y(BMy ' AM BTy (BM BT,
where the possible choices of M; and Mj can be diag(A), X...

Numerical illustration :

2(2y — 1)(1 — (22 — 1))
0= 0P and = (200 VBTG, ),
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F1a.: Eigenvalues for the Schur complement and for the Elman
preconditioner
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F1G.: Eigenvalues for the Schur complement preconditioned by the
Elman preconditioner



Numerical illustration with v = 0.01 and M; = M, = diag(A)

2
°

0.011"% 0.01
° 3 ., %o
0.005p 0005/ o
Ot 2 of wom o
"‘Mm e o
-0.005, g -0.005, *°
.
.
-0.01 ,j -0.01 N
-0.015 -0.015
0 005 01 015 02 ® 005 01 015 02

F1a.: Eigenvalues for the Schur complement and the Elman
preconditioner
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F1G.: Eigenvalues of the Schur complement preconditioned by the Elman
preconditioner
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The linear system is solved by a Uzawa method with a
preconditioned Bicgstab such as the relative residual is lower down

1078,
h Precond. | v=1|v=10"t | v=102 | v =103
0.0398 X 15 15 42 NC
diag(A) 17 18 35 223
0.0212 X 19 22 73 NC
diag(A) 32 34 40 175
0.01129 X 28 32 101 NC
diag(A) 66 61 69 160

TAB.: Number of iterations according to the mesh step i and the
viscosity v with the Elman preconditioner.
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CONCLUSION

@ Applications to fluid dynamics problems with " arbitrary”
meshes

@ Preconditioners (Fortran 90, Sparskit2, PETSC)
@ Strategy for higher Reynolds numbers
@ Extension to the 3D-problems



