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Introduction

Resolution of elliptic problems on

”arbitrary” meshes

u.n

p

w

In order to avoid orthogonality constraints, we add unknowns : the
velocity u is defined on the edges with its two components, and
the pressure p and the vorticity ω are defined both on the primal
and dual cells.
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Construction of meshes

Primal and dual meshes
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Fig.: A primal mesh and its dual mesh

Hypothesis : The primal boundary cells have only one edge on the
boundary.
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Construction of meshes

Diamond mesh
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Fig.: Interior and boundary diamond cells
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Construction of differential discrete operators

Construction discrete gradient operator

〈∇p〉|Dj
=

1

|Dj |

∫

Dj

∇p

=
1

|Dj |

∫

∂ Dj

p n

Sk2

Sk1

D j
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n’j
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A
n
j

j

Using

∫

[SG]
p ≈ ℓSG

[p(S) + p(G)]

2
and the relations in the

triangle, we obtain the definition of the discrete gradient ∇
D
h on

Dj :

(∇D
h p)j :=

1

2 |Dj |

{[
pP

k2
− pP

k1

]
|A′

j |n
′
j +

[
pT

i2
− pT

i1

]
|Aj |nj

}
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Construction of differential discrete operators

Construction of the discrete divergence

operator

Definition of the discrete divergence
on the primal cells :

(∇T
h · u)i :=

1

|Ti|

∑

j∈V(i)

|Aj | uj · nji

nji

AjTi

Definition of the discrete divergence
on the interior dual cells :

(∇P
h · u)k :=

1

|Pk|

∑

j∈E(k)

|A′
j | uj · n

′
jk

jA’

G

G

i1

i2

,
jk

kP

n
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Construction of differential discrete operators

Aj nj

jA
,

jk
,

n

Definition of the discrete divergence on the boundary dual cells :

(∇P
h ·u)k :=

1

|Pk|




∑

j∈E(k)

|A′
j | uj · n

′
jk +

∑

j∈E(k)∩∂Ω

1

2
|Aj | uj · nj




We have the following discrete Green formula :

−(u, ∇D
h p)Ω + (u · n, p)∂Ω =

1

2

[
(∇T

h · u, pT )Ω + (∇P
h · u, pP )Ω

]
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Construction of differential discrete operators

Discrete curl operators

In the same way, we define a discrete vector curl operator (acting
on a scalar) on the diamond cells :

(∇D
h × φ)j := −

1

2 |Dj |

{[
φP

k2
− φP

k1

]
|A′

j | τ
′
j +

[
φT

i2
− φT

i1

]
|Aj | τj

}

and, a discrete scalar curl operator (acting on a vector) on the
primal and dual cells :

(∇T
h × u)i :=

1

|Ti|

∑

j∈V(i)

|Aj | uj · τji

(∇P
h × u)k :=

1

|Pk|

∑

j∈E(k)

|A′
j | uj · τ

′
jk

(∇P
h ×u)k :=

1

|Pk|




∑

j∈E(k)

|A′
j | uj · τ

′
jk +

∑

j∈E(k)∩∂Ω

1

2
|Aj | uj · τj



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Application to the Navier-Stokes problem

Discretization

Discretization

We are interested in the stationary Navier-Stokes problem :

−ν ∆u + u · ∇u + ∇p = f , ∇ · u = 0 in Ω,

u = 0 on Γ,

∫

Ω
p = 0.

As u · ∇u = ∇(
u

2

2
) + (∇× u) u × ez, using the ”Bernoulli

pressure” π = p +
u

2

2
, we solve :

−ν ∆u + (∇× u) u × ez + ∇π = f , ∇ · u = 0 in Ω,

u = 0 on Γ,

∫

Ω
π = 0.
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Application to the Navier-Stokes problem

Discretization

Approximation of (∇× w)|Dj
:

(∇×w)|Dj
≈

(∇T
h × w)i1 + (∇T

h × w)i2 + (∇P
h × w)k1

+ (∇P
h × w)k2

4

For continuous operators, −∆u = ∇ ×∇× u − ∇∇ · u.

Unknowns : (u, π) = (uj , π
T
i , πP

k )

ν
[
(∇D

h ×∇T,P
h × u)j − (∇D

h ∇T,P
h · u)j

]

+(∇× w)|Dj
uj × ez + (∇D

h π)j = f
D
j , ∀Dj /∈ Γ

(∇T
h · u)i = 0, ∀Ti

(∇P
h · u)k = 0, ∀Pk

uj = 0, ∀Dj ∈ Γ
∑

i∈[1,I]

|Ti| πT
i =

∑

k∈[1,K]

|Pk| πP
k = 0
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Application to the Navier-Stokes problem

Discretization

Existence and uniqueness of the solution (uj , π
T
i , πP

k ) :
we use the essential property

uj × ez · uj = 0.

We can deduce (pT
i , pP

k ) computing : p = π −
ũ

2

2
, where ũ is a

quadrature formula defined on the primal and dual cells, according
to the uj defined on the diamond cells. At last, we project the
(pT

i , pP
k ) in order to vanish the mean-value.
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Application to the Navier-Stokes problem

Preconditioning the linear system

Preconditioning the linear system

(Work in collaboration with Delphine Jennequin)

We are led to solve the following saddle–point problem :

(
A BT

B 0

) (
u

p

)
=

(
F

g

)
.

which is equivalent to the following system (Uzawa method) :

Au + BT p = F

−BA−1BT p = g − BA−1
F
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Application to the Navier-Stokes problem

Preconditioning the linear system

Preconditioning the Schur complement :

S = −BA−1BT .

Elman (1996) proposed (for the finite elements) to take :

S−1 ≈ −(BBT )−1(BABT )(BBT )−1.

There exists also another formulation with weights :

S−1 ≈ −(BM−1
2 BT )−1(BM−1

2 AM−1
1 BT )(BM−1

1 BT )−1,

where the possible choices of M1 and M2 can be diag(A), X...

Numerical illustration :

Ω = [0, 1]2 and w =

(
2(2y − 1)(1 − (2x − 1)2)
−2(2x − 1)(1 − (2y − 1)2)

)
.
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Application to the Navier-Stokes problem

Preconditioning the linear system

Numerical illustration with ν = 1 and M1 = M2 = diag(A)
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Fig.: Eigenvalues for the Schur complement and for the Elman
preconditioner
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Fig.: Eigenvalues for the Schur complement preconditioned by the
Elman preconditioner
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Application to the Navier-Stokes problem

Preconditioning the linear system

Numerical illustration with ν = 0.01 and M1 = M2 = diag(A)
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Fig.: Eigenvalues for the Schur complement and the Elman
preconditioner
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Application to the Navier-Stokes problem

Preconditioning the linear system

The linear system is solved by a Uzawa method with a
preconditioned Bicgstab such as the relative residual is lower down
10−8.

h Precond. ν = 1 ν = 10−1 ν = 10−2 ν = 10−3

0.0398 X 15 15 42 NC
diag(A) 17 18 35 223

0.0212 X 19 22 73 NC
diag(A) 32 34 40 175

0.01129 X 28 32 101 NC
diag(A) 66 61 69 160

Tab.: Number of iterations according to the mesh step h and the
viscosity ν with the Elman preconditioner.
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Conclusion and future works

Conclusion

Applications to fluid dynamics problems with ”arbitrary”
meshes

Preconditioners (Fortran 90, Sparskit2, PETSC)

Strategy for higher Reynolds numbers

Extension to the 3D-problems


