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Stability in L1'>° of odd order transport schemes
(&) Consequences in CFD
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Starting point

Ce.) The transport equation is

Oiu + adzu = 0, a > 0.

« It is a fundamental equation in CFD (Computational Fluid
Mechanics),

« but also for waves

0yv + O, w = 0, Ot(v+ w) 4+ 0. (v +w) =0,
<~
Oyw + 0,v = 0, Ot(v —w) — 0 (v—w) =0,

« or for particles 0; f + v.V. f = Q(f), and kinetic equations.
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Discrete case

For the transport equation it is evident that

lw®)l|r = llu(0)||zr,  Vp € [1,00].

Is true at the discrete level for linear FV or DF
schemes ?

e in L? : stability of numerical methods (arbitrary order) is usually
proved in L? under CFL

Jup ez < llupllze

e in L* : a classical obstruction result of Godunov states that the
only linear schemes which satisfy the maximum principle are
order one

HuZ’HHLoo < |lup||p~ = First order.
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Standard numerical methods

The standard Finite Volume scheme for transport writes

L ! At
l i AR = =0, v=a—.
At Ax Ax

Flux Formula CFL (in L?)
Upwind Uipl = U v <1
Lax-Wendroff Uipl = U+ 21 =) (w1 —w) | v <1
Beam-Warming || u;, 1 =u; + 21 —v)(ui—uimq) | v <2
O3 = 252 W 4 Ly BW r<1
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The p — k family

« We limit ourselves to explicit and compact schemes with a
stencil of p + 1 contiguous cells

n—|—1
E Oér j—|—7“

r=k—p

The order in space and time is p. The coefficients a..(v) are
unique. The O3 scheme (p, k) = (3,1) is

n+1
u .
®
o o o o
n n n n
]

uj_2 u u

u
-1 ] i+l

. Upwind= (1,0). L-W=(2,1). B-W=(2,0).

 Explicit formulas exist for all (p, k) : see ADER (Toro and al,
Munz and al), Delpino-Jourdren, .. ..



The Strang-Iserles theorem

Theorem 1. (Strang-lIserles) The only pairs (p, k) for which the L? stability is
true forallv < 1l are:p=2k+1,p=2kandp = 2k + 2.
See the seminal works of Strang[1962] and Strang-Iserles[1983],

see also Iserles-Norsett[1991] (Order stars theory) and
Jeltsch-and-al[1989,1996].

Our new proof of the Strang-Iserles theorem is based on the

following formula. Set fi(2) = (1 + 2)**¥. The amplification factor of
the scheme with order p and stencil k is

_ _ : (1 —1)" (p+1) —kif _if

a(f) = | fr(2) — [y (tz)dt| e, z=e"—1, €07
t=0 P

Our result is slightly more precise.

Theorem 2. Forp = 2k + 2, L? stability is true for all v < 2.

e What is remarkable is the CFL which is independant of the order p
of the scheme.
e At the same time all schemes are explicit!!!



Convergence for smooth functions
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translation of sin(x)®

One has 217 = 131072 ~ 10°. The theoretical order is reached.
Results with Have-Delpino-Jourdren.




Stability in ! and L=

1
e Define ||ul|pe = (Az Y |u;|?) @ for 1 < d < oo and ||ul|p = sup |u;].
In practice d = 1, 2 or oo are the most interesting cases

Definition 1. Asymptotic-stability We say a scheme is A-stable (asymptotic
stability) in LY if there exists a bound K > 0 which does not depend on Az,
and does not depend on v (in the L? stability domain),

such that

[u"(|a = [[A"W||pe < K[[u®||ga, Vn, Yu'.



Set for convenience 5 = ae !

where «(60) is the amplification factor in Fourier. Then || < 1 for
v < 1 (stability), and

18— 1| < CivdPT + O(0P+2) (consistency). Set ¢ € N the order of
dissipativity :

18] <1 —vC09 for 0 <0 < .

Flux

b plq
Up || 1- 41> ”>92+0<93) 1)1
LW || 1 V<1 v gs v U=v)gi o O(gd) 2|3
BW || 1— V(V 1)(1/ 2) g3 _ V(l—V)2(2—V)94_|_O<95> 2|3
1— 3|3

03 I/(l I/)(l‘l‘l/)(Q V)494+O<95>

Theorem 3. Assume p = q and some technical conditions on the amplification

factor are true (Cy > 0), then the scheme is A-stable in L' and L>°.
(Numer. Math. 2008)



lllustration : LW versus O3

Non A-stability in L! of the Lax-Wendroff scheme. The norm
increases with respect to 7" and «-. Computations done with 100,
200, 400 and 800 cells on a periodic domain.

A-stability in L' of the order-3 scheme. The norm is uniformly
bounded with respect to 7" and =-.

- p.1
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Convergence for BV solutions

Theorem 4. Assume p = 2k + 1 is odd and the scheme is A-stable in L.
Assume ug € L= N BV

1
|u"—u(nAt)||pr < Dpluglpy (Az*T’ + Az), a= LA A——

Cp+1 T pH1
« Very high order schemes are optimal for BV functions since

%
p+1

« In L? one only gets for all p
u™ — u(nAt)|| < (0||u||goo \ugv) x (A:I;"'Tb + Am)

-p.1



Numerical results

Oscillations and default of stability in L' are correlated

cells | LW (L) LW (£?) || O3 (L) | O3 (L?)
100 0.136120 | 0.183949 || 0.040989 | 0.102097
800 0.056499 | 0.094048 || 0.008625 | 0.047275
order || 5 <0.42< 2 5 2 2

Errors and order of convergence in L' and L?. CFL=0.001.

03" ——
LW

Huge oscillations for the Lax-Wendroff scheme for v = 0.01.

O3 is OK.

—-p.1
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Control of the dispersion

« The erroris ~ Ax in L! for p = 2k 4 1 large
« The vertical oscillations are bounded

~ Ax
ﬁ

Discrete solution

Exact solution

e The error in Fourier is controlled in L°° since

N 1
el < 5l

This is much stronger than the Parseval equality ||e]|.2 = ||e]| -
Therefore the structure of oscillations is controled.

-p.1



Control of the dissipation

The error estimate is

[
n_ At < D AzeT? £ A - b= —

. Assume p = 17. Then the time dependance is T#7 = T. That
IS the extra amount of dissipation is negligeable.

« The age of universe if

T ~ 60 x 60 x 24 x 365 x 14 x 10° ~ 4.41 x 10'7s.

universe

The dissipation time-scale of the scheme compares with the
age of universe!!

_p_‘]A
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The Godunov obstruction theorem

o Assume the order is odd p = 2k + 1 : then the scheme is
A-stable in L>° (up to the verification of the technical conditions)

lu"|lp= < Kyl[u¥]=, V.

Assume
K, <1.

Since the scheme is conservative, then it also preserves the
maximum principle. Therefore

p=1.

 And also
p=2k+1>1=— K, > 1.

« The oscillations are bounded for p = 2k +1 > 1. In some sense,

the new result bypasses the standard obstruction result of
Godunov.

-p.1



Linear waves

We solve the linear wave system

oyv + O, w = 0,
oyw + 0,v = 0,

as 2 decoupled transport equations

{ hut +0,ut =0, ut =v+w,

ou~ —0,u” =0, u~ =v—w.

This is archetypal of linearized Riemann solvers for hyperbolic
systems of conservation laws.
For the initial data v(0) = §(x), w(0) = 0, the exact solution is

v(t) = %5(33 — 1) + %5(33—%75), v(t) = %5(3: —t) — %

d(x+1).

- p.1



Results
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Results

The even order (2, 4, 6, ...) fluxes are not A-stable in L*.
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The odd order (1, 3, 5, ...) fluxes are experimentally A-stable in L! :
The technical conditions are true (a rigorous proof that also gives
p — K, is In preparation).

- p.1



3D : Dragster code

Solve linearized Euler equations
[ O,p +ap0yp  +pocs(Opu+ dyv) =0

GO 3 o tad 1o -0

po0:v  +ag0yv  +0yp = 0.

\

dp (Pa)
iﬁgi i Temps= 2520 s

0.000e+00
-1.000e-01
-2.000e-01

e High order FV + variable coefficients + x-y-z Splitting.
e Performance of 11.7 Tflops on the 4096 ltanium2 processors
computer (the TERA10 computer at the CEA) for a 10'° cells

structured mesh
e With P. Havé, S. Delpino an H. Jourdren.

- p.1



Conclusion

Numerical analysis of such methods is at the beginning

« High order odd finite volume schemes have “just enough”
dissipation. The main theoretical idea is to prove the stability in
L' (and L>). It is possible for p = ¢ = 2k + 1.

« |t extends the standard obstruction result of Godunov.

« These schemes are accurate for the transport of pikes and
Dirac functions.

Open problems

« Extend the theory in dimension > 1 for the wave equations, the
Maxwell equations, ..., Maxwell+particules (non linear RHS).

« Extend to Finite Volume in multiD (completely open).
« Extend 1D DG for transport (order 3, 5, ...) : reasonnable.
« Adapt to convection-diffusion equations ( ?).

« Adapt these methods in non linear CFD codes (Kluth
presentation on Monday).

-p.2
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