Stability in $L^{1,\infty}$ of odd order transport schemes Consequences in CFD

0mm.

B. Després-CEA (and UPMC)

bruno.despres@cea.fr

Starting point

The transport equation is

$$\partial_t u + a \partial_x u = 0, \qquad a > 0.$$

- It is a fundamental equation in CFD (Computational Fluid Mechanics),
- but also for waves

$$\begin{cases} \partial_t v + \partial_x w = 0, \\ \partial_t w + \partial_x v = 0, \end{cases} \iff \begin{cases} \partial_t (v + w) + \partial_x (v + w) = 0, \\ \partial_t (v - w) - \partial_x (v - w) = 0, \end{cases}$$

• or for particles $\partial_t f + v \cdot \nabla_x f = Q(f)$, and kinetic equations.

Discrete case

For the transport equation it is evident that

$$||u(t)||_{L^p} = ||u(0)||_{L^p}, \quad \forall p \in [1, \infty].$$

Is true at the discrete level for linear FV or DF schemes?

• in L^2 : stability of numerical methods (arbitrary order) is usually proved in L^2 under CFL

$$||u_h^{n+1}||_{L^2} \le ||u_h^n||_{L^2}$$

• in L^{∞} : a classical obstruction result of Godunov states that the only linear schemes which satisfy the maximum principle are order one

 $||u_h^{n+1}||_{L^{\infty}} \leq ||u_h^n||_{L^{\infty}} \Longrightarrow$ First order.

Standard numerical methods

The standard Finite Volume scheme for transport writes

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} + a \frac{u_{i+\frac{1}{2}}^n - u_{i-\frac{1}{2}}^n}{\Delta x} = 0, \quad \nu = a \frac{\Delta t}{\Delta x}.$$

Flux	Formula	CFL (in L^2)
Upwind	$u_{i+\frac{1}{2}} = u_i$	$\nu \leq 1$
Lax-Wendroff	$u_{i+\frac{1}{2}} = u_i + \frac{1}{2}(1-\nu)(u_{i+1} - u_i)$	$\nu \leq 1$
Beam-Warming	$u_{i+\frac{1}{2}} = u_i + \frac{1}{2}(1-\nu)(u_i - u_{i-1})$	$\nu \le 2$
O3	$u_{i+\frac{1}{2}} = \frac{2-\nu}{3}u_i^{LW} + \frac{1+\nu}{3}u_i^{BW}$	$\nu \leq 1$

The p - k family

• We limit ourselves to explicit and compact schemes with a stencil of p + 1 contiguous cells

$$u_j^{n+1} = \sum_{r=k-p}^k \alpha_r(\nu) u_{j+r}^n.$$

The order in space and time is p. The coefficients $\alpha_r(\nu)$ are unique. The O3 scheme (p, k) = (3, 1) is

- Upwind= (1,0). L-W=(2,1). B-W=(2,0).
- Explicit formulas exist for all (p, k) : see ADER (Toro and al, Munz and al), Delpino-Jourdren,

The Strang-Iserles theorem

Theorem 1. (Strang-Iserles) The only pairs (p, k) for which the L^2 stability is true for all $\nu \leq 1$ are : p = 2k + 1, p = 2k and p = 2k + 2.

See the seminal works of Strang[1962] and Strang-Iserles[1983], see also Iserles-Norsett[1991] (Order stars theory) and Jeltsch-and-al[1989,1996].

Our new proof of the Strang-Iserles theorem is based on the following formula. Set $f_k(z) = (1+z)^{k+\nu}$. The amplification factor of the scheme with order p and stencil k is

$$\alpha(\theta) = \left[f_k(z) - \int_{t=0}^1 \frac{(1-t)^p}{p!} f_k^{(p+1)}(tz) dt \right] e^{-k\mathbf{i}\theta}, \quad z = e^{\mathbf{i}\theta} - 1, \quad \theta \in [0, \pi]$$

Our result is slightly more precise.

Theorem 2. For p = 2k + 2, L^2 stability is true for all $\nu \leq 2$.

 \bullet What is remarkable is the CFL which is independent of the order p of the scheme.

• At the same time all schemes are explicit !!!

Convergence for smooth functions

One has $2^{17} = 131072 \approx 10^5$. The theoretical order is reached. Results with Havé-Delpino-Jourdren.

Stability in L^1 and L^∞

œ

• Define $||u||_{L^d} = (\Delta x \sum |u_i|^d)^{\frac{1}{d}}$ for $1 \le d < \infty$ and $||u||_{L^{\infty}} = \sup |u_i|$. In practice d = 1, 2 or ∞ are the most interesting cases

Definition 1. Asymptotic-stability We say a scheme is A-stable (asymptotic stability) in L^d if there exists a bound K > 0 which does not depend on Δx , and does not depend on ν (in the L^2 stability domain), such that

 $||u^{n}||_{L^{d}} = ||A^{n}u^{0}||_{L^{d}} \le K||u^{0}||_{L^{d}}, \quad \forall n, \quad \forall u^{0}.$

Set for convenience $\beta = \alpha e^{-i\nu\theta}$

where $\alpha(\theta)$ is the amplification factor in Fourier. Then $|\beta| \le 1$ for $\nu \le 1$ (stability), and

 $|\beta - 1| \le C_1 \nu \theta^{p+1} + O(\theta^{p+2})$ (consistency). Set $q \in \mathbb{N}$ the order of dissipativity :

 $|\beta| \leq 1 - \nu C_2 \theta^{q+1}$ for $0 \leq \theta \leq \pi$.

Flux	β	p	q
Up	$1 - \frac{\nu(1-\nu)}{2}\theta^2 + O(\theta^3)$	1	1
LW	$1 - \mathbf{i} \frac{\nu(1-\nu^2)}{6} \theta^3 - \frac{\nu^2(1-\nu^2)}{8} \theta^4 + O(\theta^5)$	2	3
BW	$1 - \mathbf{i} \frac{\nu(\nu-1)(\nu-2)}{6} \theta^3 - \frac{\nu(1-\nu)^2(2-\nu)}{8} \theta^4 + O(\theta^5)$	2	3
O3	$1 - \frac{\nu(1-\nu)(1+\nu)(2-\nu)}{2}4\theta^4 + O(\theta^5)$	3	3

Theorem 3. Assume p = q and some technical conditions on the amplification factor are true ($C_2 > 0$), then the scheme is A-stable in L^1 and L^∞ . (Numer. Math. 2008)

Illustration : LW versus O3

 $||A_{\rm LW}^n||_{L^1} \approx n^{\frac{1}{10}}.$

Non A-stability in L^1 of the Lax-Wendroff scheme. The norm increases with respect to T and $\frac{1}{\Delta x}$. Computations done with 100, 200, 400 and 800 cells on a periodic domain.

A-stability in L^1 of the order-3 scheme. The norm is uniformly bounded with respect to T and $\frac{1}{\Delta x}$.

Convergence for BV solutions

Theorem 4. Assume p = 2k + 1 is odd and the scheme is A-stable in L^1 . Assume $u_0 \in L^{\infty} \cap BV$

$$||u^{n} - u(n\Delta t)||_{L^{1}} \le D_{p}|u_{0}|_{BV} \left(\Delta x^{a}T^{b} + \Delta x\right), \qquad a = \frac{p}{p+1}, \ b = \frac{1}{p+1}$$

• Very high order schemes are optimal for BV functions since

$$\frac{p}{p+1} \to 1.$$

• In L^2 one only gets for all p

$$||u^n - u(n\Delta t)||_{L^2} \le \left(C||u||_{L^{\infty}}^{\frac{1}{2}}|u|_{BV}^{\frac{1}{2}}\right) \times \left(\Delta x^a T^b + \Delta x^{\frac{1}{2}}\right)$$

with $a = \frac{p}{2(p+1)} < \frac{1}{2}$ and $b = \frac{1}{2(p+1)}$.

Numerical results

Oscillations and default of stability in L^1 are correlated

cells	LW (L^1)	LW (L^2)	O3 (L ¹)	O3 (<i>L</i> ²)
100	0.136120	0.183949	0.040989	0.102097
800	0.056499	0.094048	0.008625	0.047275
order	$\frac{1}{3} < 0.42 < \frac{2}{3}$	$\frac{1}{3}$	$\frac{3}{4}$	$\frac{3}{8}$

Errors and order of convergence in L^1 and L^2 . CFL=0.001.

Huge oscillations for the Lax-Wendroff scheme for $\nu = 0.01$. O3 is OK.

Control of the dispersion

- The error is $\approx \Delta x$ in L^1 for p = 2k + 1 large
- The vertical oscillations are bounded

• The error in Fourier is controlled in L^{∞} since

$$||\hat{e}||_{L^{\infty}} \le \frac{1}{2\pi} ||e||_{L^{1}}.$$

This is much stronger than the Parseval equality $||\hat{e}||_{L^2} = ||e||_{L^2}$. Therefore the structure of oscillations is controled.

Control of the dissipation

The error estimate is

$$\bigotimes ||u^n - u(n\Delta t)||_{L^1} \le D_p |u_0|_{BV} \left(\Delta x^a T^b + \Delta x \right), \qquad a = \frac{p}{p+1}, \ b = \frac{1}{p+1}$$

- Assume p = 17. Then the time dependance is $T^{\frac{1}{p+1}} = T^{\frac{1}{18}}$. That is the extra amount of dissipation is negligeable.
- The age of universe if

 $T_{\text{universe}} \approx 60 \times 60 \times 24 \times 365 \times 14 \times 10^9 \approx 4.41 \times 10^{17} s.$

The dissipation time-scale of the scheme compares with the age of universe !!

The Godunov obstruction theorem

• Assume the order is odd p = 2k + 1: then the scheme is A-stable in L^{∞} (up to the verification of the technical conditions)

$$||u^n||_{L^{\infty}} \le K_p||u^0||_{L^{\infty}}, \quad \forall n.$$

Assume

 $K_p \leq 1.$

Since the scheme is conservative, then it also preserves the maximum principle. Therefore

p = 1.

And also

$$p = 2k + 1 > 1 \Longrightarrow K_p > 1.$$

• The oscillations are bounded for p = 2k + 1 > 1. In some sense, the new result bypasses the standard obstruction result of Godunov.

Linear waves

We solve the linear wave system

œ

$$\begin{cases} \partial_t v + \partial_x w = 0, \\ \partial_t w + \partial_x v = 0, \end{cases}$$

as 2 decoupled transport equations

$$\begin{cases} \partial_t u^+ + \partial_x u^+ = 0, \quad u^+ = v + w, \\ \partial_t u^- - \partial_x u^- = 0, \quad u^- = v - w. \end{cases}$$

This is archetypal of linearized Riemann solvers for hyperbolic systems of conservation laws.

For the initial data $v(0) = \delta(x)$, w(0) = 0, the exact solution is

$$v(t) = \frac{1}{2}\delta(x-t) + \frac{1}{2}\delta(x+t), \quad v(t) = \frac{1}{2}\delta(x-t) - \frac{1}{2}\delta(x+t).$$

Results

Results

The even order (2, 4, 6, ...) fluxes are not A-stable in L^1 .

œ

The odd order (1, 3, 5, ...) fluxes are experimentally A-stable in L^1 : The technical conditions are true (a rigorous proof that also gives $p \mapsto K_p$ is in preparation).

3D : Dragster code

Solve linearized Euler equations

e

- High order FV + variable coefficients + x-y-z Splitting.
- \bullet Performance of 11.7 Tflops on the 4096 Itanium2 processors computer (the TERA10 computer at the CEA) for a 10^{10} cells structured mesh
- With P. Havé, S. Delpino an H. Jourdren.

Conclusion

Numerical analysis of such methods is at the beginning

œ

- High order odd finite volume schemes have "just enough" dissipation. The main theoretical idea is to prove the stability in L¹ (and L[∞]). It is possible for p = q = 2k + 1.
- It extends the standard obstruction result of Godunov.
- These schemes are accurate for the transport of pikes and Dirac functions.

Open problems

- Extend the theory in dimension > 1 for the wave equations, the Maxwell equations, ..., Maxwell+particules (non linear RHS).
- Extend to Finite Volume in multiD (completely open).
- Extend 1D DG for transport (order 3, 5, ...) : reasonnable.
- Adapt to convection-diffusion equations (?).
- Adapt these methods in non linear CFD codes (Kluth presentation on Monday).