
Introduction
The generic coupling method

Numerical results

A recipe to couple two Finite Volume
schemes for elliptic problems

J. Droniou
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Model problem

Elliptic linear equation:{
−div(A∇u) = f in Ω,
u = g on ∂Ω

Ω bounded polygonal open set of Rd ,

A : Ω → MN(R) bounded uniformly elliptic tensor,

f ∈ L2(Ω), g ∈ H1/2(∂Ω).

Remark: also possible: convection terms, less regular right-hand
side, etc.
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2-points Finite Volume schemes

Advantages
I good properties (conservation of fluxes, maximum principle)

I no complex geometric function to compute, accept generic grid
elements

I cost-effective and easy to implement

Drawbacks
I the mesh must satisfy orthogonality conditions depending on the
diffusion tensor A.

I strong non-linearity not obvious to handle



Introduction
The generic coupling method

Numerical results

FV schemes for elliptic equations
Ideas and objectives

“Advanced” FV schemes

(VF-Hybrid, MultiPoint Flux Approximation, Discrete Duality
Finite Volume, Mixed Finite Volume, etc... also: Discontinuous
Galerkin, Mimetic Finite Difference...)

Advantages
I nearly any kind of grid

I anisotropic, heterogeneous diffusion tensor

I sometimes even strongly non-linear problems

Drawbacks
I loss of good properties (mainly the maximum principle)

I very expensive (number of unknows)
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“Advanced” FV schemes built to accept anisotropy or
non-admissible grids.

These issues are however not necessarily spread throughout the
domain Ω:
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Ideas

Idea 1 (not original): use a simple scheme where possible, and a
complex scheme only where necessary.

Complex scheme, capable of

cost effectivehandling a non-admissible grid
Simple scheme,

Idea 2 (a little bit more original ?): do this in a systematic way.
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About mixing two schemes for a single equation...

Quarteroni-Valli 1999 (Domain Decomposition)

Lazarov-Pasciak-Vassilevski 1999 (MFE+FV) [FVCA2]

Achdou-Japhet-Maday-Nataf 2002 (mortar for FV)

I Mainly performed on specific schemes, using their precise
expressions.

I No reflexion, especially for FV methods, on a mixing based on
generic properties and principles of the schemes.
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Objectives

I Extract the “core” elements of FV methods:

basic unknowns and relations used to write the schemes

basic properties proved on the schemes to study their
convergence.

I Using only the core unknowns and relations: find a way to couple
two FV schemes (each one being applied in a subregion of Ω).

I Using only the core properties of the schemes: study the
convergence of the coupling of the schemes.

 generic coupling method working with many FV schemes.
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Core unknows of FV schemes for −div(A∇u) = f

Mesh: partition M of Ω in polygonal control volumes K .
I EK set of edges σ of K .
I Eint and Eext interior and boundary edges.

K

L

M

σ
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Core unknows of FV schemes for −div(A∇u) = f

Mesh: partition M of Ω in polygonal control volumes K .
I EK set of edges σ of K .
I Eint and Eext interior and boundary edges.

Unknows: approximate values...

(uK )K of the solution in the control volumes,

(uσ)σ of the solution on the boundary edges Eext,

(FK ,σ)K ,σ of the flux
∫
σ A∇u · nK ,σ.

In some schemes, some of these unknowns can be directly
eliminated and/or other unknowns can be needed.
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Core relations of FV schemes for −div(A∇u) = f

Conservativity of the fluxes:

FK ,σ + FL,σ = 0 for all σ between K and L

Balance of fluxes:

−
∑
σ∈EK

FK ,σ =

∫
K

f for all K

Boundary conditions:

uσ =

∫
σ

g for all σ ∈ Eext
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Definition of the coupling of two schemes S [ and S ]

Setting:
I Ω cut in two: Ω = Ω[ t Ω]

IM[ mesh on Ω[, adapted to a FV scheme S [.

IM] mesh on Ω], adapted to a FV scheme S ].

I the edges of M[ and M] are the same on Γ = ∂Ω[ ∩ ∂Ω].

Ω[

Γ

Ω]
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Definition of the coupling of two schemes S [ and S ]

Equations inside each subdomain:
I The equations of S [ on M[, of S ] on M].

 2× Card({σ ⊂ Γ}) equations cannot be written: boundary
equations on Γ for each schemes.

Equations coupling the schemes:
I No jump of the solution at Γ:

u[
σ = u]

σ for all σ ⊂ Γ

I conservativity of the fluxes:

F [
K ,σ + F ]

L,σ = 0 for all σ ⊂ Γ between K ∈M[ and L ∈M].

Works with other kinds of schemes, if they have fluxes...
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“FV technique of proof”

Find an adequate discrete H1 (semi-)norm: multiply the
left-hand side of the flux balance by uK .
I Existence and uniqueness of an approximate solution.

A priori estimates: using the discrete norm.
I Compactness of the approximate solution, convergence in L2 up
to a subsequence to a function ū ∈ H1.

Convergence: take ϕ regular, multiply the flux balance by
ϕK ≈ ϕ on K , and perform discrete integrate-by-parts.
I ū is the solution to the PDE.

Technique also efficient for non-linear equations, coupled systems
with low regularity on the solutions, etc.
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Discrete H1 semi-norm

We denote U = (uK ,FK ,σ, uσ) the vector of core unknowns.

|U|2S =
∑

σ∈Eint

FK ,σ(uL − uK ) +
∑

σ∈Eext

FK ,σ(uσ − uK ) (1)

Definition (Property N)

A scheme S satisfies Property N if, for any solution U, the
right-hand side of (1) is indeed non-negative, and if U = 0 as soon
as |U|S and one uσ are zero.

Proposition

If S [ and S ] satisfy Property N, then the coupling S [–S ] has one
and only one solution U[].
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A priori estimates (g = 0)

Definition (Properties PΛ and T)

Let Λ ⊂ ∂ω. A scheme S on ω satisfies Property PΛ or T if there
exists C such that, for any solution U = (uK ,FK ,σ, uσ),

||u||L2(Ω) ≤ C |U|S + C ||t(U)||L2(Λ) (Property PΛ)

||t(U)||L2(∂Ω) ≤ C |U|S + C ||u||L2(Ω) (Property T).

with t(U) = (uσ)σ∈Eext .

Proposition

If S [ satisfies Property P∂Ω[\Γ and if

S ] satisfies Property P∂Ω]\Γ, or

S ] satisfies Properties P∂Ω] and S [ satisfies Property T

then the L2 and discrete H1 norms of U[] are bounded.
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Convergence

Definition (Properties C and L)

A couple (S , (Mn)n≥1) of scheme/discretizations on ω satisfies
Property C if size(Mn) → 0 and, with Un solution to S on Mn, if
(|Un|S + ||un||L2)n is bounded then, up to a subsequence, un → ū
and t(Un) → γ(ū) weakly in L2, with ū ∈ H1.

It satisfies Property L if, moreover, for all regular ϕ,∑
σ∈En

int

FK ,σ(ϕL − ϕK ) +
∑

σ∈En
ext

FK ,σ(ϕσ − ϕK ) →
∫

A∇ū · ∇ϕ.

Proposition

If (S [, (M[
n)n≥1) and (S ], (M]

n)n≥1) satisfy Properties C and L,
then U[] converges to the solution of the PDE.
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Framework

Following numerical tests realized by coupling:

I Standard 2-point Finite Volume scheme (FV2).

I Mixed Finite Volume scheme (MFV) [“advanced” scheme].



Introduction
The generic coupling method

Numerical results

Qualitative behavior of the coupling

Equation: −∆u = f on Ω = (0, 1)2

Exact solution: u(x , y) = sin(xy).

FV2 MFV

Visualy completely similar to the pure MFV scheme
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Equation: −∆u = f on Ω = (0, 1)2

Exact solution: u(x , y) = x(1− x)y(1− y).

MFV FV2
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Equation: −div(A∇u) + div(Vu) = f on Ω = (0, 1)2 with:

A = Id in the FV2 zone.

A(x , y) = R2πx

(
0.1 0
0 1

)
RT

2πx in the MFV zone.

V (x , y) = 10(−y , x).

Exact solution: u(x , y) = x(1− x)y(1− y).

MFV FV2
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Comparison of the number of unknowns and errors

Triangular grids (≈ −8% unknowns):

MFV Coupling MFV-FV2

#UNK L2 L∞ #UNK L2 L∞

14900 5.76E-4 1.15E-3 13725 6.04E-4 1.15E-3

33600 2.56E-4 5.12E-4 30900 2.68E-4 5.12E-4

59800 1.44E-4 2.88E-4 54950 1.51E-4 2.88E-4

Quadrangular grids, “well” (≈ −35% unknowns):

MFV Coupling MFV-FV2

#UNK L2 L∞ #UNK L2 L∞

19800 2.75E-4 3.38E-4 12600 2.92E-4 3.37E-4

43512 1.25E-4 1.54E-4 29032 1.26E-4 1.49E-4

79600 6.98E-5 8.63E-5 50200 7.31E-5 8.99E-5



Introduction
The generic coupling method

Numerical results

A remark on singularities

Equation: −div(A∇u) = f with u(x , y) = x2 and

A = k11x<0.5 + k21x≥0.5.

I f is singular: measure on x = 0.5, put in the left domain.

MFV FV2 FV2MFV

A=1A=100A=100A=1

L2 error: 0.28 L2 error: 7.4E-3
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Conclusion

I Generic coupling method, using only the core elements of FV
schemes, not their particular expression.

I Convergence of the coupling ensured by properties satisfied by
each scheme separately (if you know your scheme, you do not need
to make a specific study of the coupling).

I Gain of computational cost, no degradation of the qualitative
and quantitative convergence properties.

I The solution of the coupling can be computed by an iterative
process, using pre-existing “black boxes” implementations of each
scheme.
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