A recipe to couple two Finite Volume schemes for elliptic problems

J. Droniou

Université Montpellier II France

FVCA5 Aussois June, 08-13 2008.

Contents

Introduction

- FV schemes for elliptic equations
- Ideas and objectives

2 The generic coupling method

- Core elements of FV schemes for elliptic problems
- Definition of the coupling
- Study of convergence

^EV schemes for elliptic equations deas and objectives

Contents

Introduction

- FV schemes for elliptic equations
- Ideas and objectives

2 The generic coupling method

- Core elements of FV schemes for elliptic problems
- Definition of the coupling
- Study of convergence

3 Numerical results

FV schemes for elliptic equations Ideas and objectives

Model problem

Elliptic linear equation:

$$\begin{cases} -\operatorname{div}(A\nabla u) = f & \text{in } \Omega, \\ u = g & \text{on } \partial\Omega \end{cases}$$

- Ω bounded polygonal open set of \mathbb{R}^d ,
- $A: \Omega \to M_N(\mathbb{R})$ bounded uniformly elliptic tensor,

•
$$f \in L^2(\Omega)$$
, $g \in H^{1/2}(\partial \Omega)$.

Remark: also possible: convection terms, less regular right-hand side, etc.

FV schemes for elliptic equations ldeas and objectives

2-points Finite Volume schemes

Advantages

- good properties (conservation of fluxes, maximum principle)
- ▶ no complex geometric function to compute, accept generic grid elements
- cost-effective and easy to implement

Drawbacks

 \blacktriangleright the mesh must satisfy orthogonality conditions depending on the diffusion tensor *A*.

strong non-linearity not obvious to handle

FV schemes for elliptic equations ldeas and objectives

"Advanced" FV schemes

(VF-Hybrid, MultiPoint Flux Approximation, Discrete Duality Finite Volume, Mixed Finite Volume, etc... also: Discontinuous Galerkin, Mimetic Finite Difference...)

Advantages

- nearly any kind of grid
- > anisotropic, heterogeneous diffusion tensor
- sometimes even strongly non-linear problems

Drawbacks

- loss of good properties (mainly the maximum principle)
- very expensive (number of unknows)

"Advanced" FV schemes built to accept anisotropy or non-admissible grids.

These issues are however not necessarily spread throughout the domain $\boldsymbol{\Omega}:$

FV schemes for elliptic equations Ideas and objectives

Ideas

Idea 1 (not original): use a simple scheme where possible, and a complex scheme only where necessary.

Ideas

FV schemes for elliptic equations Ideas and objectives

Idea 1 (not original): use a simple scheme where possible, and a complex scheme only where necessary.

Idea 2 (a little bit more original ?): do this in a systematic way.

About mixing two schemes for a single equation...

- Quarteroni-Valli 1999 (Domain Decomposition)
- Lazarov-Pasciak-Vassilevski 1999 (MFE+FV) [FVCA2]
- Achdou-Japhet-Maday-Nataf 2002 (mortar for FV)
- ► Mainly performed on specific schemes, using their precise expressions.
- ► No reflexion, especially for FV methods, on a mixing based on generic properties and principles of the schemes.

FV schemes for elliptic equations Ideas and objectives

Objectives

- ► Extract the "core" elements of FV methods:
 - basic unknowns and relations used to write the schemes
 - basic *properties* proved on the schemes to study their convergence.

FV schemes for elliptic equations Ideas and objectives

Objectives

- ▶ Extract the "core" elements of FV methods:
 - basic unknowns and relations used to write the schemes
 - basic *properties* proved on the schemes to study their convergence.

▶ Using only the core unknowns and relations: find a way to couple two FV schemes (each one being applied in a subregion of Ω).

FV schemes for elliptic equations Ideas and objectives

Objectives

- ► Extract the "core" elements of FV methods:
 - basic unknowns and relations used to write the schemes
 - basic *properties* proved on the schemes to study their convergence.
- ► Using only the core unknowns and relations: find a way to couple two FV schemes (each one being applied in a subregion of Ω).
- ► Using only the core properties of the schemes: study the convergence of the coupling of the schemes.
- → generic coupling method working with many FV schemes.

Introduction Core elements of FV schemes for elliptic prob The generic coupling method Definition of the coupling Numerical results Study of convergence

Contents

Introduction

- FV schemes for elliptic equations
- Ideas and objectives

2 The generic coupling method

- Core elements of FV schemes for elliptic problems
- Definition of the coupling
- Study of convergence

3 Numerical results

Core elements of FV schemes for elliptic problems Definition of the coupling Study of convergence

Core unknows of FV schemes for $-\operatorname{div}(A\nabla u) = f$

Mesh: partition \mathcal{M} of Ω in polygonal control volumes K.

- $\triangleright \mathcal{E}_K$ set of edges σ of K.
- \blacktriangleright $\mathcal{E}_{\mathrm{int}}$ and $\mathcal{E}_{\mathrm{ext}}$ interior and boundary edges.

Core unknows of FV schemes for $-\operatorname{div}(A\nabla u) = f$

Mesh: partition \mathcal{M} of Ω in polygonal control volumes K.

- $\triangleright \mathcal{E}_{\mathcal{K}}$ set of edges σ of \mathcal{K} .
- \blacktriangleright \mathcal{E}_{int} and \mathcal{E}_{ext} interior and boundary edges.

Unknows: approximate values...

- $(u_{\mathcal{K}})_{\mathcal{K}}$ of the solution in the control volumes,
- $(u_{\sigma})_{\sigma}$ of the solution on the boundary edges $\mathcal{E}_{\mathrm{ext}}$,
- $(F_{K,\sigma})_{K,\sigma}$ of the flux $\int_{\sigma} A \nabla u \cdot \mathbf{n}_{K,\sigma}$.

In some schemes, some of these unknowns can be directly eliminated and/or other unknowns can be needed.

Core relations of FV schemes for $-\operatorname{div}(A\nabla u) = f$

Conservativity of the fluxes:

$$F_{K,\sigma} + F_{L,\sigma} = 0$$
 for all σ between K and L

Balance of fluxes:

$$-\sum_{\sigma\in\mathcal{E}_{K}}F_{K,\sigma}=\int_{K}f$$
 for all K

Boundary conditions:

$$u_\sigma = \int_\sigma g \quad ext{ for all } \sigma \in \mathcal{E}_{ ext{ext}}$$

Definition of the coupling of two schemes S^{\flat} and S^{\sharp}

Setting:

- ▶ Ω cut in two: Ω = Ω[▷] ⊔ Ω[♯]
- \mathcal{M}^{\flat} mesh on Ω^{\flat} , adapted to a FV scheme S^{\flat} .
- \mathcal{M}^{\sharp} mesh on Ω^{\sharp} , adapted to a FV scheme S^{\sharp} .
- ▶ the edges of \mathcal{M}^{\flat} and \mathcal{M}^{\sharp} are the same on $\Gamma = \partial \Omega^{\flat} \cap \partial \Omega^{\sharp}$.

Definition of the coupling of two schemes S^{\flat} and S^{\sharp}

Equations inside each subdomain:

▶ The equations of S^{\flat} on \mathcal{M}^{\flat} , of S^{\sharp} on \mathcal{M}^{\sharp} .

 $\rightsquigarrow 2 \times \operatorname{Card}(\{\sigma \subset \Gamma\})$ equations cannot be written: boundary equations on Γ for each schemes.

Definition of the coupling of two schemes S^{\flat} and S^{\sharp}

Equations inside each subdomain:

▶ The equations of S^{\flat} on \mathcal{M}^{\flat} , of S^{\sharp} on \mathcal{M}^{\sharp} .

 $\rightsquigarrow 2 \times \operatorname{Card}(\{\sigma \subset \Gamma\})$ equations cannot be written: boundary equations on Γ for each schemes.

Equations coupling the schemes:

• No jump of the solution at Γ :

$$u_{\sigma}^{\flat} = u_{\sigma}^{\sharp}$$
 for all $\sigma \subset \Gamma$

conservativity of the fluxes:

$${\sf F}_{{\sf K},\sigma}^{lat}+{\sf F}_{{\sf L},\sigma}^{\sharp}=0$$
 for all $\sigma\subset {\sf \Gamma}$ between ${\sf K}\in {\cal M}^{lat}$ and ${\sf L}\in {\cal M}^{\sharp}.$

Works with other kinds of schemes, if they have fluxes...

"FV technique of proof"

Find an adequate discrete H^1 (semi-)norm: multiply the left-hand side of the flux balance by u_K .

▶ Existence and uniqueness of an approximate solution.

"FV technique of proof"

Find an adequate discrete H^1 (semi-)norm: multiply the left-hand side of the flux balance by u_K .

Existence and uniqueness of an approximate solution.

A priori estimates: using the discrete norm.

▶ Compactness of the approximate solution, convergence in L^2 up to a subsequence to a function $\bar{u} \in H^1$.

"FV technique of proof"

Find an adequate discrete H^1 (semi-)norm: multiply the left-hand side of the flux balance by u_K .

Existence and uniqueness of an approximate solution.

A priori estimates: using the discrete norm. • Compactness of the approximate solution, convergence in L^2 up to a subsequence to a function $\bar{u} \in H^1$.

Convergence: take φ regular, multiply the flux balance by $\varphi_K \approx \varphi$ on K, and perform discrete integrate-by-parts. $\blacktriangleright \overline{u}$ is the solution to the PDE.

Technique also efficient for non-linear equations, coupled systems with low regularity on the solutions, etc.

Discrete H^1 semi-norm

We denote $U = (u_K, F_{K,\sigma}, u_\sigma)$ the vector of core unknowns.

$$|U|_{S}^{2} = \sum_{\sigma \in \mathcal{E}_{int}} F_{K,\sigma}(u_{L} - u_{K}) + \sum_{\sigma \in \mathcal{E}_{ext}} F_{K,\sigma}(u_{\sigma} - u_{K})$$
(1)

Discrete H^1 semi-norm

We denote $U = (u_K, F_{K,\sigma}, u_\sigma)$ the vector of core unknowns.

$$|U|_{S}^{2} = \sum_{\sigma \in \mathcal{E}_{int}} F_{K,\sigma}(u_{L} - u_{K}) + \sum_{\sigma \in \mathcal{E}_{ext}} F_{K,\sigma}(u_{\sigma} - u_{K})$$
(1)

Definition (Property N)

A scheme S satisfies Property N if, for any solution U, the right-hand side of (1) is indeed non-negative, and if U = 0 as soon as $|U|_S$ and one u_σ are zero.

Proposition

If S^{\flat} and S^{\sharp} satisfy Property N, then the coupling $S^{\flat}-S^{\sharp}$ has one and only one solution $U^{\flat\sharp}$.

A priori estimates (g = 0)

Definition (Properties P_{Λ} and T)

Let $\Lambda \subset \partial \omega$. A scheme S on ω satisfies Property P_{Λ} or T if there exists C such that, for any solution $U = (u_K, F_{K,\sigma}, u_{\sigma})$,

 $\begin{aligned} ||u||_{L^{2}(\Omega)} &\leq C|U|_{S} + C||t(U)||_{L^{2}(\Lambda)} & (Property \ P_{\Lambda}) \\ ||t(U)||_{L^{2}(\partial\Omega)} &\leq C|U|_{S} + C||u||_{L^{2}(\Omega)} & (Property \ T). \end{aligned}$

with $t(U) = (u_{\sigma})_{\sigma \in \mathcal{E}_{ext}}$.

A priori estimates (g = 0)

Definition (Properties P_{Λ} and T)

Let $\Lambda \subset \partial \omega$. A scheme S on ω satisfies Property P_{Λ} or T if there exists C such that, for any solution $U = (u_K, F_{K,\sigma}, u_{\sigma})$,

 $\begin{aligned} ||u||_{L^{2}(\Omega)} &\leq C|U|_{S} + C||t(U)||_{L^{2}(\Lambda)} & (Property \ P_{\Lambda}) \\ ||t(U)||_{L^{2}(\partial\Omega)} &\leq C|U|_{S} + C||u||_{L^{2}(\Omega)} & (Property \ T). \end{aligned}$

with $t(U) = (u_{\sigma})_{\sigma \in \mathcal{E}_{ext}}$.

Proposition

If S^{\flat} satisfies Property $P_{\partial\Omega^{\flat}\setminus\Gamma}$ and if

• S^{\sharp} satisfies Property $P_{\partial \Omega^{\sharp} \setminus \Gamma}$, or

• S^{\sharp} satisfies Properties $P_{\partial\Omega^{\sharp}}$ and S^{\flat} satisfies Property T then the L^2 and discrete H^1 norms of $U^{\flat\sharp}$ are bounded.

Introduction Core elements of FV schemes for elliptic problems
The generic coupling method
Numerical results
Study of convergence

Convergence

Definition (Properties C and L)

A couple $(S, (\mathcal{M}_n)_{n\geq 1})$ of scheme/discretizations on ω satisfies Property C if size $(\mathcal{M}_n) \to 0$ and, with U_n solution to S on \mathcal{M}_n , if $(|U_n|_S + ||u_n||_{L^2})_n$ is bounded then, up to a subsequence, $u_n \to \overline{u}$ and $t(U_n) \to \gamma(\overline{u})$ weakly in L^2 , with $\overline{u} \in H^1$.

It satisfies Property L if, moreover, for all regular φ ,

$$\sum_{\sigma \in \mathcal{E}_{\mathrm{int}}^n} F_{\mathcal{K},\sigma}(\varphi_L - \varphi_{\mathcal{K}}) + \sum_{\sigma \in \mathcal{E}_{\mathrm{ext}}^n} F_{\mathcal{K},\sigma}(\varphi_\sigma - \varphi_{\mathcal{K}}) \to \int A \nabla \bar{u} \cdot \nabla \varphi.$$

Proposition

If $(S^{\flat}, (\mathcal{M}_{n}^{\flat})_{n \geq 1})$ and $(S^{\sharp}, (\mathcal{M}_{n}^{\sharp})_{n \geq 1})$ satisfy Properties C and L, then $U^{\flat \sharp}$ converges to the solution of the PDE.

Contents

Introduction

- FV schemes for elliptic equations
- Ideas and objectives

2 The generic coupling method

- Core elements of FV schemes for elliptic problems
- Definition of the coupling
- Study of convergence

Framework

Following numerical tests realized by coupling:

- Standard 2-point Finite Volume scheme (FV2).
- ▶ Mixed Finite Volume scheme (MFV) ["advanced" scheme].

Qualitative behavior of the coupling

Equation: $-\Delta u = f$ on $\Omega = (0,1)^2$

Exact solution: $u(x, y) = \sin(xy)$.

Visualy completely similar to the pure MFV scheme

Equation: $-\Delta u = f$ on $\Omega = (0, 1)^2$

Exact solution: u(x, y) = x(1-x)y(1-y).

Equation: $-\operatorname{div}(A\nabla u) + \operatorname{div}(Vu) = f$ on $\Omega = (0,1)^2$ with:

- A = Id in the FV2 zone.
- $A(x, y) = R_{2\pi x} \begin{pmatrix} 0.1 & 0 \\ 0 & 1 \end{pmatrix} R_{2\pi x}^{T}$ in the MFV zone. • V(x, y) = 10(-y, x).

Exact solution: u(x, y) = x(1-x)y(1-y).

Comparison of the number of unknowns and errors

Triangular grids ($\approx -8\%$ unknowns):

MFV			Coupling MFV-FV2		
#UNK	L ²	L∞	#UNK	L ²	L∞
14900	5.76E-4	1.15E-3	13725	6.04E-4	1.15E-3
33600	2.56E-4	5.12E-4	30900	2.68E-4	5.12E-4
59800	1.44E-4	2.88E-4	54950	1.51E-4	2.88E-4

Quadrangular grids, "well" ($\approx -35\%$ unknowns):

MFV			Coupling MFV-FV2		
#UNK	L^2	L^{∞}	#UNK	L^2	L^{∞}
19800	2.75E-4	3.38E-4	12600	2.92E-4	3.37E-4
43512	1.25E-4	1.54E-4	29032	1.26E-4	1.49E-4
79600	6.98E-5	8.63E-5	50200	7.31E-5	8.99E-5

A remark on singularities

Equation:
$$-\operatorname{div}(A\nabla u) = f$$
 with $u(x, y) = x^2$ and
 $A = k_1 \mathbf{1}_{x < 0.5} + k_2 \mathbf{1}_{x \ge 0.5}.$

▶ f is singular: measure on x = 0.5, put in the left domain.

A remark on singularities

Equation:
$$-\operatorname{div}(A\nabla u) = f$$
 with $u(x, y) = x^2$ and
 $A = k_1 \mathbf{1}_{x < 0.5} + k_2 \mathbf{1}_{x \ge 0.5}.$

▶ f is singular: measure on x = 0.5, put in the left domain.

Conclusion

► Generic coupling method, using only the core elements of FV schemes, not their particular expression.

► Convergence of the coupling ensured by properties satisfied by each scheme separately (*if you know your scheme, you do not need to make a specific study of the coupling*).

► Gain of computational cost, no degradation of the qualitative and quantitative convergence properties.

► The solution of the coupling can be computed by an iterative process, using pre-existing "black boxes" implementations of each scheme.