

BENCH OF ANISOTROPIC PROBLEMS

SUSHI: A SCHEME USING STABILIZATION AND HYBRID INTERFACES

Robert Eymard^{1,3}, Thierry Gallouët^{2,3} and Raphaèle Herbin^{2,3}

¹Université de Paris-Est, France, Robert.Eymard@univ-mlv.fr

² Université d'Aix-Marseille, France, Raphaele.Herbin,Thierry.Gallouet@latp.univ-mrs.fr ³ Work supported by GDR MOMAS, Program CNRS-PACEN

Construction of a discrete gradient

Discretization \mathcal{D} :

 \bullet general polygonal mesh $\mathcal M$

• planar edges: \mathcal{E} , $\mathcal{E} = \mathcal{E}_{int} \cup \mathcal{E}_{ext}$, $\mathcal{E}_{int} = \mathcal{B} \cup \mathcal{H}$, $\mathcal{H} = \mathcal{E}_{int} \setminus \mathcal{B}$ • cell points $(\mathbf{x}_K)_{K \in \mathcal{M}}$

Discrete unknowns: $u = ((u_K)_{K \in \mathcal{M}}, (u_\sigma)_{\sigma \in \mathcal{E}}) \in X_{\mathcal{D}}$

 $\nabla_{K,\sigma} u = \nabla_K u + R_{K,\sigma} u \mathbf{n}_{K,\sigma}$

Description of the scheme $X_{\mathcal{D},\mathcal{B}} = \{ v \in X_{\mathcal{D}}, v_{\sigma} = 0 \,\forall \sigma \in \mathcal{E}_{\text{ext}}, v_{\sigma} = \sum_{K \in \mathcal{M}} \beta_{\sigma}^{K} v_{K} \,\forall \sigma \in \mathcal{B} \}$ with $\sum_{K \in \mathcal{M}} \beta_{\sigma}^{K} = 1$ and $\mathbf{x}_{\sigma} = \sum_{K \in \mathcal{M}} \beta_{\sigma}^{K} \mathbf{x}_{K}$.

Results for Test 1 umin = 0.0, umax = 1 + sin(1).• Test 1.1 mesh1 (triangles) \rightarrow ocvl2= 2.00, ocvgradl2= 1.99 • Test 1.1 mesh4_j_i (distorted quadrangles) rid nunkw nnmat sumflux erl2 7.03E-03 1.13E-02 8.00E-03 1.04E-02 2.33E-03 9.61E-0 sh1 (triangles) $\rightarrow ocvl2 = 2.00$, ocvgradl2 = .98

Discrete unknowns: $u = ((u_K)_{K \in \mathcal{M}}, (u_\sigma)_{\sigma \in \mathcal{H}})$	•Test 1.2
(Find $u \in X_{\mathcal{D}} \mathfrak{R}$ such that:	
$\begin{cases} \int \Lambda \nabla_{\mathcal{D}} u \cdot \nabla_{\mathcal{D}} v \mathrm{d}\mathbf{x} = \int f \ \Pi_{\mathcal{M}} v d\mathbf{x}, \ \forall v \in X_{\mathcal{D}, \mathcal{B}}. \end{cases}$	
$\int \Omega \qquad \qquad J_{\Omega}$ where $\prod_{AAV} = v_{K}$ on K .	
$\operatorname{card}(\mathcal{M})) + \operatorname{card}(\mathcal{H})$ equations and unknowns	•Test 1.2
If $\Lambda = Id$, with triangles or rectangles \rightsquigarrow classical FV scheme.	
Two $finite{E}$ schemes: non-parametric (np) and parametric (p)	
$\texttt{MF-np } \alpha = 1, \ \mathcal{H} = \mathcal{E} \setminus \mathcal{B} \text{ at the discontinuities of } \mathbf{K}$	
鮓-p choose $\alpha > 0$, choose $\mathcal{H} \subset \mathcal{E}_{int}$.	• Commen
	Maximum
$\pi \Gamma$ -p $\mathcal{H} = \mathcal{E}_{int}$: full hybrid finite volume scheme. $\Phi \mathcal{E}_{int}$: \mathcal{E}_{int} : full homeometric scheme (no odre unlineration)	
m -p with $D = c_{int}$. This barycentric scheme (no edge unknowns).	
Results for Test 3 : Oblique flow	
• mesh2 (uniform rectangles) $\text{umin}=0.0, \text{umax}=1.0.$	•mesh5 (nor
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

1 56 752 -2.22E-15 1.26E-02 1.07E-01 - - 3 896 14380 9.86E-14 7.87E-04 2.26E-02 1.99 1.05 5 14326 238838 1.48E 11 4.92E 05 5.50E 02 2.00 1.00
$\begin{bmatrix} 3 & 14350 & 238328 & 1.48E-11 & 4.92E-03 & 5.39E-03 & 2.00 & 1.00 \\ \hline 7 & 229376 & 3854396 & 1.54E-09 & 3.14E-06 & 1.42E-03 & 1.99 & 0.99 \end{bmatrix}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
[est 1.2 mesh3 (loc. ref.) $\rightsquigarrow \mathbf{ocvl2} = 2.02$, $\mathbf{ocvgradl2} = 1.46$
Comments $\mathcal{B} = \mathcal{E}_{int}$ (full barycentric scheme)
Maximum principle OK for all tests.
Results for Test $4 \cdot$ Vertical fault
results for rest r. vertical laure
nesh5 (non conforming rectangles) $\text{umin}=0.0, \text{umax}=1.0$
$nesh5 \text{ (non conforming rectangles) } umin=0.0, umax=1.0$ $\frac{\frac{1}{1} \frac{\text{nunkw} \text{ nnmat} \text{ sumflux} \text{ umin} \text{ umax}}{1 304 2270 1.82E-13 4.15E-02 9.61E-01}$ $reg 1160 8528 1.79E-13 1.99E-02 9.82E-01$ $ref 105424 1347242 4.53E-10 1.32E-03 9.99E-01$

• Solution for the vertical fault on the meshes: (Left) mesh5 (center)

• $\pounds F_{-p}, \alpha = 1., \mathcal{B} = \emptyset \rightsquigarrow \mathbf{ocvl2} = 2.53, \mathbf{oc}$	cvgradl2 = 1.23.
--	------------------

i	nunkw	nnmat	sumflux	erl2	ergrad	ratiol2	ratiog	umin	umax
1	148	820	2.98E-10	2.61E-01	3.56E-01	-	-	-1.07	1.07
2	576	3264	7.28E-08	$1.13E{+}01$	$1.00E{+}00$	-5.54	-1.52E + 00	-18.6	16.3
3	2272	13024	1.68E-07	2.06E + 00	9.98E-01	2.48	1.92E-03	-6.59	6.08
4	9024	52032	3.91E-07	3.16E-01	9.87 E-01	2.72	1.63E-02	-1.84	1.75
5	35968	208000	5.61E-08	5.12E-02	$9.07 \text{E}{-}01$	2.63	1.22E-01	-1.06	1.06
6	143616	831744	-3.72E-06	8.66E-03	6.04E-01	2.57	5.89E-01	-1.00	1.00
7	573952	3326464	$7.65 \text{E}{-}06$	1.50E-03	2.58E-01	2.53	1.23E + 00	-1.00	1.00

• Comments 鮓-np does not perform well: maximum principle always satisfied, but bad approximation. MF-p with $\mathcal{B} = \emptyset$, i.e. fully hybrid scheme, with $\alpha = 1$.

Maximum principle is violated on coarser grids, but convergence of the solution obtained.

• mesh5 (non conforming rectangles) umin=0.0, umax=1.0. \rightarrow ocvl2= 1.84, ocvgradl2= 1.30.

i	nunkw	nnmat	sumflux	erl2	ergrad	ratiol2	ratiog
1	16	132	-1.22E-15	1.47E-01	2.12E-01	1.38	1.12
2	64	676	7.77E-16	4.94E-02	9.72 E- 02	1.58	1.13
3	256	3012	-5.22E-15	1.64E-02	3.97E-02	1.59	1.29
4	1024	12676	4.44E-15	4.90E-03	1.61E-02	1.75	1.30
5	4096	51972	1.10E-13	1.36E-03	6.55 E-03	1.85	1.30

• Solution on mesh2_i for i=2 (left), i=3 (center), i=4 (right)

fluy0

flux0

flux1

7 65536 846852 1.99E-11 .0008 .999

3 -1.87E-01 1.87E-01 -1.06E-01 1.06E-01 2.53E-01 3.01E-01 1.57E-01

5 -1.94E-01 1.94E-01 -9.89E-02 9.89E-02 2.50E-01 2.66E-01 6.15E-02

7 -1.93E-01 1.93E-01 -9.85E-02 9.85E-02 2.43E-01 2.46E-01 1.28E-02

fluy1

-1.80E-01 1.80E-01 -1.14E-01 1.14E-01 2.25E-01 3.23E-01 3.01E-01

ener1

ener2

Solutions for the oblique flow on mesh2_i for i=2 (left), i=3(center), i=4 (right) white = maximum, black = minimum

• Comments $\mathcal{B} = \mathcal{E}_{int}$ (full barycentric). Maximum principle OK

$$\begin{split} \texttt{ener1} &= \sum_{K \in \mathcal{M}} (\int_{K} \mathbf{K}(\mathbf{x}) \mathbf{d}\mathbf{x}) \nabla_{\mathbf{K}} \mathbf{u} \cdot \nabla_{\mathbf{K}} \mathbf{u} \\ \texttt{ener2} &= -\sum_{\sigma \in \mathcal{E}_{\text{ext}}} F_{K,\sigma}(u) u_{\sigma} \\ \texttt{ener2} - \texttt{ener1} &= \sum_{K \in \mathcal{M}} \sum_{\sigma \in \mathcal{E}_{K}} \mathbf{m}(D_{K,\sigma}) R_{K,\sigma}^{2}(u) \mathbf{K}_{K} \mathbf{n}_{K,\sigma} \cdot \mathbf{n}_{K,\sigma} \to \mathbf{n}_{K,\sigma} \end{split}$$

Results for Test 6 and Test 7

• Test 6 Oblique drain, $\min = -1.2$, $\max = 0$, coarse (C) and fine (F) oblique meshes, mesh6 and mesh7

grid	nunkw	nnmat	$\operatorname{sumflux}$	erl2	ergrad
С	239	2583	-1.16E-13	1.74E-15	1.35E-14
\mathbf{F}	319	3627	8.17E-14	3.67 E- 15	4.24E-14

grid	erflx0	erflx1	erfly0	erfly1	erflm	umin	umax
С	7.61E-15	1.21E-14	8.47 E- 15	3.05E-15	1.68E-12	-1.15	-5.39E-02
F	1.67E-14	2.99E-15	7.49E-15	2.91E-15	5.38E-12	-1.15	-5.39E-02

• Test 7 Oblique barrier. min = -5.575, max = 0.575, coarse

mesh5_reg. (Right) mesh5_ref.

• Comments Maximum principle is respected. ener2 and ener1 converge ener2 and ener1 satisfy: ener2 \geq ener1.

Results for Test 8 and Test 9

• Test 8 mesh8 (perturbed parallelograms), umin=0.0, umax=1.0

	nunkw	nnmat	sumflux	umin	umax	flux0	flux1	fluy0	fluy1
SUSHI-np	121	2011	0.00E + 00	-1.19E-03	5.65E-02	7.35E-04	1.29E-04	4.99E-01	5.00E-01
SUSHI-p	121	2011	0.00E + 00	3.26E-06	6.77 E-03	-4.21E-02	-3.29E-02	5.38E-01	5.37E-01

Comments

 $\mathcal{B} = \mathcal{E}_{int}$ (full barycentric scheme)

鮓-np slight violation of the maximum principle. 鮓-p scheme, $\mathcal{B} = \mathcal{E}_{int}$, $\alpha \geq 85$: maximum principle OK, but solution damped as the center. • Test 9 Anisotropy & wells mesh9 (squares) umin=0.0, umax=1.0
 nunkw
 nnmat
 sumflux
 umin
 umax

 SUSHI-np
 165
 1745
 -3.65E-16
 -1.00E+00
 2.00E+00

 SUSHI-p
 385
 2805
 -8.47E-16
 0.00E+00
 1.00E+00
 $\mathcal{B} = \mathcal{E}_{int}$ (full barycentric scheme) Max principle obtained with $\ensuremath{\not n}\ensuremath{\mathcal{F}}\xspace_{-p}$ scheme, $\ensuremath{\mathcal{B}}\xspace=\emptyset$, $\ensuremath{\alpha}\xspace=.3$ or $\ensuremath{\not n}\xspace_{-p}$ scheme, $\mathcal{B} = \mathcal{E}_{int} \alpha = .005$, but larger inner oscillations in this latter case. • Solutions of Tests 8 and 9 with *p*-np (left) and *p*-p (right) Test 8 Test 9

i	erflx0	erflx1	erfly0	erfly1	umin	umax
1	-6.62E-02	9.35E-02	-6.62E-02	9.35E-02	7.76E-02	.921
2	-4.03E-02	4.68E-02	-4.03E-02	4.68E-02	1.64E-02	.970
3	-1.51E-02	1.66E-02	-1.51E-02	1.66E-02	3.50E-03	.992
4	-4.58E-03	4.97 E-03	-4.58E-03	$4.97 \text{E}{-}03$	7.79E-04	.998
5	-1.27E-03	1.36E-03	-1.27E-03	1.36E-03	1.80E-04	.999

• Comments

 $\mathcal{B} = \mathcal{E}_{int}$ (full barycentric scheme)

Maximum principle again OK

Asymptotic rates of convergence not reached for i = 5

oblique maché
oblique mesno
nunkwnnmatsumfluxerl2ergrad2392583-8.97E-141.30E-153.78E-15
erflx0erflx1erfly0erfly1erflmuminumax1.28E-13-1.43E-13-3.89E-153.16E-141.77E-13-5.54.537
Comments
As for tests 1, 3, 4, 5, we use \mathbb{HF}_{-np} .
For 1, 3, 4, 5, $\text{MF-np} = \text{full barycentric.}$
Here \pounds -np partially barycentric: $\mathcal{H} \neq \emptyset$,
\mathcal{H} corresponds to the interfaces between the subdomains.
Exact fluxes thanks to the design of the \mathbb{HF} -np scheme