Optimality of error estimates in the combined finite volume-finite element and discontinuous Galerkin methods for nonlinear convection-diffusion problems * Miloslav Feistauer

Charles University Prague Faculty of Mathematics and Physics

*Presented at the conference FVCA08, Aussois 2008

1994-2001 M.F., J. Felcman, M. Lukáčová, V. Dolejší, P. Angot, G. Warnecke and A. Kliková developed combined FV-FE method for the solution of nonlinear convection-diffusion problems and compressible viscous flow several combinations:

a) dual finite volumes over a triangular mesh - conforming P^1 finite elements

b) barycentric finite volumes over a triangular

mesh - Crouzeix-Raviart finite elements

c) triangular FV's-conforming FE's

Theoretical analysis obtained in the cases a), b) in 1995-2001

c) gives best computational results for compressible viscous flow × analysis unsuccessful till 2007 - M.F., M. Bejček, T. Gallouët, R. Herbin, J. Hájek

Continuous problem

$$\Omega \subset \mathbb{R}^2$$
 - bounded polygonal domain (0,*T*), *T* > 0, - time interval

Initial-boundary value problem:

$$\frac{\partial u}{\partial t} + \sum_{s=1}^{2} \frac{\partial f_s(u)}{\partial x_s} = \varepsilon \,\Delta u + g \quad \text{in } Q_T = \Omega \times (0,T), \ (1)$$

initial and boundary conditions

$$u(x,0) = u^0(x), x \in \Omega, \quad u|_{\partial\Omega \times (0,T)} = 0.$$
 (2)

Assumptions on data:

a) $f_s \in C^1(\mathbb{R})$, $f_s(0) = 0$, $|f'_s| \leq C_{f'} s = 1, 2$, b) $\varepsilon > 0$, c) $g \in C([0,T]; L^2(\Omega))$, d) $u^0 \in L^2(\Omega)$.

Notation:

$$(u,v) = \int_{\Omega} u v \, \mathrm{d}x,$$

$$a(u,v) = \varepsilon \int_{\Omega} \nabla u \cdot \nabla v \, \mathrm{d}x ,$$

$$|u|_{H^{1}(\Omega)} = \left(\int_{\Omega} |\nabla u|^{2} \mathrm{d}x\right)^{1/2}.$$

Combined FV-FE method

 $\mathcal{T}_h = \{K_i\}_{i \in I} \text{ and } \mathcal{D}_h = \{D_i\}_{i \in J} (I, J \subset Z^+ = \{0, 1, 2, \ldots\})$

- suitable index sets): two triangulations of the domain Ω satisfying the standard assumptions from the FE method

Triangles from $T_h = finite$ elements

Triangles from $\mathcal{D}_h = \text{finite volumes}$

If two finite volumes $D_i, D_j \in \mathcal{D}_h$ have a common side, we call them neighbours.

Then we use the notation $\Gamma_{ij} = \Gamma_{ji} = \partial D_i \cap \partial D_j$ $s(i) = \{j \in J; j \neq i, D_j \text{ is a neighbour of } D_i\}.$ $|\Gamma_{ij}|$ - length of the side Γ_{ij} n_{ij} - unit outer normal to ∂D_i on the side Γ_{ij}

For $k \in Z^+$, $K \in T_h$ we denote by $P^k(K)$ the space of all polynomials on K of degree $\leq k$.

Finite element spaces:

$$X_h = \{ v_h \in C(\overline{\Omega}); \ v_h |_K \in P^1(K) \ \forall K \in \mathcal{T}_h \},$$
$$V_h = \{ v_h \in X_h; \ v_h |_{\partial \Omega} = 0 \}$$

Finite volume space:

$$Y_h = \{v_h \in L^2(\Omega); v_h|_{D_i} \in P^0(D_i) \ \forall i \in J\}$$

The relation between the FE and FV spaces – lumping operator L_h :

$$L_h v|_{D_i} = \frac{1}{|D_i|} \int_{D_i} v \, \mathrm{d}x, \quad i \in J.$$
 (3)

Discrete problem

Let u be an exact sufficiently regular solution. Then

$$\left(\frac{\partial u}{\partial t}, v\right) + \sum_{i \in J} \int_{D_i} \sum_{s=1}^2 \frac{\partial f_s(u)}{\partial x_s} v \, dx + a(u, v) = (g, v) \, \forall v \in V_h.$$
(4)

The terms with fluxes f_s approximated with the aid of numerical flux H:

$$b_{h}(u,v) = \sum_{i \in J} L_{h}v|_{D_{i}} \sum_{j \in s(i)} H(L_{h}u|_{D_{i}}, L_{h}u|_{D_{j}}, n_{ij}) |\Gamma_{ij}|.$$
(5)

1) H(u, v, n) is defined for $u, v \in \mathbb{R}$ and $n \in B_1 = \{n \in \mathbb{R}^2; |n| = 1\}$, and *Lipschitz-continuous* with respect to u, v. 2) H(u, v, n) is consistent: $H(u, u, n) = \sum_{s=1}^{2} f_s(u) n_s, u \in \mathbb{R}, n = (n_1, n_2) \in B_1.$ 3) H(u, v, n) is conservative: H(u, v, n) = -H(v, u, -n), $u, v \in \mathbb{R}, n \in B_1.$

Approximate solution:

 $u_{h} \in C^{1}([0,T]; V_{h}),$ $a) \left(\frac{\partial u_{h}}{\partial t}, v_{h}\right) + b_{h}(u_{h}, v_{h}) + a(u_{h}, v_{h}) = (g, v_{h}) (6)$ $\forall v_{h} \in V_{h},$ $b) u_{h}(0) = u_{h}^{0} = \Pi_{h}u^{0} = X_{h} - \text{interpolation}$

Theoretical analysis

Consider systems $\{\mathcal{T}_h\}_{h\in(0,h_0)}$ of finite element meshes and $\{\mathcal{D}_h\}_{h\in(0,h_0)}$ of finite volume meshes of the domain Ω , with $h_0 > 0$

Notation:

 $h_K = \operatorname{diam}(K)$, $h = \max_{K \in \mathcal{T}_h} h_K$ $\rho_K =$ the radius of the largest circle inscribed into the element $K \in \mathcal{T}_h$ Let

$$\frac{h_K}{\rho_K} \leq C_R, \quad h \leq C_I h_K,$$

diam $(D_i) \leq C_D h,$
 $K \in \mathcal{T}_h, h \in (0, h_0), i \in J,$

with constants $C_R, C_I, C_D > 0$ independent of K, hand *i*.

Let us set $\omega(D_i) = \bigcup \{ K \in \mathcal{T}_h; K \cap D_i \neq \emptyset \}$

For a given element $K \in T_h$, let R_K be the number of sets $\omega(D_i)$ containing the element K.

We assume that there exists $R < +\infty$, independent of h, such that $R_K \leq R$ for any $K \in T_h$.

 \implies each element $K \in T_h$ intersects at most R finite volumes D_i . Then

$$\sum_{i \in J} |v_h|_{H^1(\omega(D_i))}^2 \le R |v_h|_{H^1(\Omega)}^2.$$
(7)

The analysis of the FV-FE method carried out under the assumption

$$\frac{\partial u}{\partial t} \in L^2(0,T; H^2(\Omega)).$$

Under the above assumptions the error of the method $e_h = u - u_h$ satisfies the estimate

$$\max_{t \in [0,T]} \|e_h\|_{L^2(\Omega)} \le C h, \ \sqrt{\varepsilon} \sqrt{\int_0^T |e_h(\vartheta)|^2_{H^1(\Omega)}} \mathrm{d}\vartheta \le C h.$$
(8)

Optimality of the error estimates

Verification on the example of the 2D viscous Burgers equation

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x_1} + u \frac{\partial u}{\partial x_2} - \varepsilon \Delta u = g, \qquad (9)$$

considered in the space-time domain $Q_T = \Omega \times (0,1)$, $\Omega = (-1,1)^2$,

equipped with such data that the exact solution has the form

$$u = (1 - e^{-2t})(1 - x_1^2)^2(1 - x_2^2)^2$$
 and $\varepsilon = 0.1$

The time discretization is carried out by a semiimplicit Euler scheme

$$\left(\frac{u_h^k - u_h^{k-1}}{\tau}, v_h\right) + b_h(u_h^{k-1}, v_h) + a_h(u_h^k, v_h) = (g^{k-1}, v_h),$$
(10)

with overkill in time, i.e. with very small time step.

Numerical flux:

$$H(u_1, u_2, n) = \sum_{s=1}^2 f_s(u_1) n_s$$
, if $A > 0$
and

$$H(u_1, u_2, n) = \sum_{s=1}^2 f_s(u_2) n_s$$
, if $A \le 0$,
where

$$A = \sum_{s=1}^{2} f'_{s}(\bar{u})n_{s}, \ \bar{u} = \frac{1}{2}(u_{1} + u_{2}), n = (n_{1}, n_{2}).$$

We consider successively refined FE meshes T_{h_i} , $i = 1, \ldots, 6$, and two types of secondary FV meshes a) $D_h^1 = T_h$, b) \mathcal{D}_{h}^{2} defined as the Delaunay triangulation with vertices equal to the barycenters of the FE triangles from \mathcal{T}_{h} and the FE boundary vertices. In Figures the triangulations $\mathcal{T}_{h_{1}}$ and $\mathcal{D}_{h_{1}}^{2}$ are shown.

Tables:

computational results obtained with the aid of the FV meshes $\mathcal{D}_{h_i}^1$ and $\mathcal{D}_{h_i}^2$

 $e_{h,L^{\infty}(L^2)}$ - computational errors evaluated in the $L^{\infty}(L^2)$ -norm

 $e_{h,L^2(H^1)}$ - computational errors evaluated in the $L^2(H^1)$ -norm

 $EOC_{L^{\infty}(L^2)}$, $EOC_{L^2(H^1)}$ - corresponding experimen-

tal orders of convergence

#I	h	$e_{h,L^\infty(L^2)}$	$EOC_{L^{\infty}(L^2)}$	$e_{h,L^2(H^1)}$	$EOC_{L^2(H^1)}$
128	3.54E-01	6.57E-02	-	1.09E-01	-
512	1.77E-01	2.95E-02	1.16	5.58E-02	0.97
2048	8.84E-02	1.40E-02	1.08	2.81E-02	0.99
8192	4.42E-02	6.87E-03	1.03	1.41E-02	0.99
32768	2.21E-02	3.40E-03	1.02	7.05E-03	1.00
131072	1.11E-02	1.69E-03	1.01	3.53E-03	1.00
Average	e		1.06		0.99

Method with the FV meshes $\mathcal{D}_h^1 = \mathcal{T}_h$

#I	$h = e_{h,L^{\infty}(L^2)}$	$e_{h,L^\infty(L^2)}$ $EOC_{L^\infty(L^2)}$ e_h	$EOC_{L^2(H^1)} EOC_{L^2(H^1)}$
128 3.54E	01 7.50E-02	7.50E-02 - 1.1	-3E-01 -
512 1.77E	01 4.57E-02	4.57E-02 0.71 6.1	8E-02 0.87
2048 8.84E	02 1.78E-02	1.78E-02 1.36 3.0	01E-02 1.04
8192 4.42E	02 1.18E-02	1.18E-02 0.59 1.6	62E-02 0.89
2768 2.21E	02 4.37E-03	4.37E-03 1.43 7.5	56E-03 1.10
.072 1.11E	02 2.99E-03	2.99E-03 0.55 4.1	2E-03 0.88
/erage		0.93	0.96
2768 2.21E .072 1.11E verage	02 1.18E-02 02 4.37E-03 02 2.99E-03	1.18E-02 0.59 1.6 4.37E-03 1.43 7.5 2.99E-03 0.55 4.1 0.93	52E-02 56E-03 12E-03

Method with the FV meshes \mathcal{D}_h^2

Conclusion: the method is of the first order both in $L^2(0,T; H^1(\Omega))$ -norm as well as in $L^\infty(0,T; L^2(\Omega))$ norm.

DG finite element method

A natural extension of the FV method for obtaining higher order schemes:

the discontinuous Galerkin method

piecewise polynomial approximation on suitable meshes without any requirement of the continuity between neighbouring elements

Consider again problem (1) - (2).

 \mathcal{T}_h - triangulation of Ω with standard properties $\Gamma_{ij}, s(i), |\Gamma_{ij}|, n_{ij}$ as above use the symbol Γ_{ij} for sides of K_i which are parts of $\partial \Omega$ and set $\gamma(i) = \{j; \ \Gamma_{ij} \subset \partial K_i \cap \partial \Omega\}.$

Over the triangulation \mathcal{T}_h we introduce the broken Sobolev space $H^1(\Omega, \mathcal{T}_h) = \{v; v | K \in H^1(K) \forall K \in \mathcal{T}_h\}$ with seminorm

$$|v|_{H^1(\Omega,\mathcal{T}_h)} = \left(\sum_{K\in\mathcal{T}_h} |v|_{H^1(K)}^2\right)^{1/2}, \quad v\in H^1(\Omega,\mathcal{T}_h).$$
(11)

For $v \in H^1(\Omega, \mathcal{T}_h)$, $i \in I$, $j \in s(i)$ we use the notation

$$v|_{\Gamma_{ij}} = \text{trace of } v|_{K_i} \text{ on } \Gamma_{ij},$$

$$v|_{\Gamma_{ji}} = \text{trace of } v|_{K_j} \text{ on } \Gamma_{ji},$$

$$\langle v \rangle_{\Gamma_{ij}} = \frac{1}{2} \left(v|_{\Gamma_{ij}} + v|_{\Gamma_{ji}} \right),$$

$$[v]_{\Gamma_{ij}} = v|_{\Gamma_{ij}} - v|_{\Gamma_{ji}}$$

The approximate solution is sought in the space of discontinuous piecewise polynomial functions S_h defined by

$$S_h = S^{p,-1}(\Omega, \mathcal{T}_h) = \{v; v | K \in P^p(K) \ \forall K \in \mathcal{T}_h\}.$$
(12)

DGFE formulation

We introduce the forms for $u, \varphi \in H^2(\Omega, \mathcal{T}_h)$

$$\begin{split} a_{h}(u,\varphi) &= \sum_{i \in I} \int_{K_{i}} \varepsilon \, \nabla u \cdot \nabla \varphi \, \mathrm{d}x \\ &- \sum_{i \in I} \sum_{\substack{j \in s(i) \\ j < i}} \int_{\Gamma_{ij}} \varepsilon \langle \nabla u \rangle \cdot n_{ij}[\varphi] \, \mathrm{d}S - \sum_{i \in I} \sum_{\substack{j \in s(i) \\ j < i}} \int_{\Gamma_{ij}} \varepsilon \langle \nabla \varphi \rangle \cdot n_{ij}[u] \, \mathrm{d}S \\ &- \sum_{i \in I} \sum_{\substack{j \in \gamma(i) \\ j < i}} \int_{\Gamma_{ij}} \varepsilon \, \nabla u \cdot n_{ij} \varphi \, \mathrm{d}S - \sum_{i \in I} \sum_{\substack{j \in \gamma(i) \\ j < i}} \int_{\Gamma_{ij}} \varepsilon \, \nabla \varphi \cdot n_{ij} u \, \mathrm{d}S, \\ J_{h}^{\sigma}(u,\varphi) &= \sum_{i \in I} \sum_{\substack{j \in s(i) \\ j < i}} \int_{\Gamma_{ij}} \sigma[u] [\varphi] \, \mathrm{d}S + \sum_{i \in I} \sum_{\substack{j \in \gamma(i) \\ j \in \gamma(i)}} \int_{\Gamma_{ij}} \sigma u \varphi \, \mathrm{d}S, \\ \ell_{h}(\varphi)(t) &= \int_{\Omega} g(t), \end{split}$$

$$b_{h}(u,\varphi) = -\sum_{i\in I} \int_{K_{i}} \sum_{s=1}^{d} f_{s}(u) \frac{\partial\varphi}{\partial x_{s}} dx$$

+
$$\sum_{i\in I} \sum_{j\in s(i)} \int_{\Gamma_{ij}} H\left(u|_{\Gamma_{ij}}, u|_{\Gamma_{ji}}, n_{ij}\right) \varphi|_{\Gamma_{ij}} dS$$

H - numerical flux with above properties Weight σ : $\sigma|_{\Gamma_{ij}} = C_W/d(\Gamma_{ij})$, $C_W > 0$ - sufficiently large constant.

The forms a_h and J_h^{σ} represent here the symmetric discretization of the diffusion term and the interior penalty - SIPG version of the DG approximation

Discrete problem:

$$u_h^0 \in S_h$$
 - $L^2(\Omega)$ -projection of u^0 onto S_h

$u_{h} - \text{DGFE solution, if}$ a) $u_{h} \in C^{1}([0,T]; S_{h}),$ b) $\left(\frac{\partial u_{h}(t)}{\partial t}, \varphi_{h}\right) + b_{h}(u_{h}(t), \varphi_{h}) + a_{h}(u_{h}(t), \varphi_{h}) + \varepsilon J_{h}^{\sigma}(u_{h}(t), \varphi_{h})$ $= \ell_{h}(\varphi_{h})(t) \quad \forall \varphi_{h} \in S_{h}, \ \forall t \in (0,T),$ c) $u_{h}(0) = u_{h}^{0}.$ (13)

Assumptions:

$$u_t = \frac{\partial u}{\partial t} \in L^2(0, T; H^{p+1}(\Omega)), \qquad (14)$$

 $\{T_h\}_{h \in (0,h_0)}$, $h_0 > 0$, is a regular system of triangulations:

there exists a constant $C_R > 0$ such that

 $h_K/\rho_K \leq C_R$ for all $K \in \mathcal{T}_h$ and all $h \in (0, h_0)$.

Analysis: M.F., V. Dolejší, V. Sobotíková

Under the above assumptions, the following error estimate was obtained:

$$\max_{t \in [0,T]} \|e_h(t)\|_{L^2(\Omega)}^2$$

$$+ \varepsilon \int_0^T \left(|e_h(\vartheta)|_{H^1(\Omega,h)}^2 + J_h^{\sigma}(e_h(\vartheta), e_h(\vartheta)) \right) \mathrm{d}\vartheta \leq Ch^{2p}.$$
(15)

This estimate is optimal in the $L^2(H^1)$ -norm, but suboptimal in the $L^{\infty}(L^2)$ -norm. **Goal:** to derive an optimal error estimate in the $L^{\infty}(L^2)$ -norm

carried out by M.F., V. Dolejší, V. Kučera, V. Sobotíková

with the aid of the Aubin-Nitsche technique based on the use of the dual problem:

$$-\Delta \psi = z \quad \text{in } \Omega, \ \psi|_{\partial \Omega} = 0 \tag{16}$$

Assumption: Ω is convex

Then the weak solution $\psi \in H^2(\Omega)$ and there exists a constant C > 0, independent of z, such that

$$\|\psi\|_{H^{2}(\Omega)} \leq C \|z\|_{L^{2}(\Omega)}.$$
 (17)

Under the above assumptions the error $e_h = u - u_h$ satisfies the estimate

$$\|e_h\|_{L^{\infty}(0,T;L^2(\Omega))} \le Ch^{p+1},$$
 (18)

with a constant C > 0 independent of h.

Numerical experiments

Verification of estimate (18) by the evaluation of error and experimental order of convergence for 2D viscous Burgers equation

Data: $\Omega = (0,1)^2$, T = 10, $\varepsilon = 0.1$ and g such that the exact solution: $u(x_1, x_2, t) = (1 - e^{-10t}) \hat{u}(x_1, x_2)$, where

 $\hat{u}(x_1, x_2) = 2r^{\alpha}x_1x_2(1 - x_1)(1 - x_2), \ r \equiv (x_1^2 + x_2^2)^{1/2}$ $\alpha \in \mathbb{R}$ - constant which determines the regularity of the solution u, by Babuška

$$\widehat{u} \in H^{\beta}(\Omega) \quad \forall \beta \in (0, \alpha + 3)$$
 (19)

Table:

computational errors in the $L^2(\Omega)$ -norm at time t = T = 10

experimental orders of convergence (EOC) for

 $\alpha = 4$

 \implies we have the optimal order of convergence $O(h^{p+1})$ for p = 1, 2, 3

		P^1		P^2		P^3	
mesh	h	$\ e_h\ _{L^2(\Omega)}$	EOC	$\ e_h\ _{L^2(\Omega)}$	EOC	$\ e_h\ _{L^2(\Omega)}$	EOC
1	0.177E+00	0.3943E-02	_	0.1948E-03	_	0.1099E-04	_
2	0.118E+00	0.1843E-02	1.88	0.6046E-04	2.89	0.2330E-05	3.83
3	0.884E-01	0.1060E-02	1.92	0.2621E-04	2.91	0.7689E-06	3.85
4	0.589E-01	0.4811E-03	1.95	0.7999E-05	2.93	0.1593E-06	3.88
5	0.442E-01	0.2733E-03	1.97	0.3427E-05	2.95	0.5173E-07	3.91
6	0.295E-01	0.1226E-03	1.98	0.1032E-05	2.96	0.1054E-07	3.92
7	0.221E-01	0.6927E-04	1.98	0.4385E-06	2.97	0.3494E-08	3.84

Computational errors and the corresponding orders of convergence of

 P^1 , P^2 and P^3 approximations for $\alpha = 4$.

A small decrease of EOD P^3 approximation - caused by rounding off errors.

The combined FV-FE method simple, but firstorder accurate

Natural extension: DGFEM - allows to construct higher-order accurate method

Open problems:

- Analysis of the problem with mixed Dirichlet-Neumann boundary conditions
- Analysis of optimal error estimates in nonconvex domains

References:

Bejček M., Feistauer M., Gallouët, T., Hájek J., Herbin R., Combined triangular FV – triangular FE method for nonlinear convection-diffusion problems, ZAMM, 87 (2007), 499-517.

Dolejší V., Feistauer M., Kučera V., Sobotíková V., An optimal $L^{\infty}(L^2)$ -error estimate for the discontinuous Galerkin approximation of a nonlinear nonstationary convection-diffusion problem, IMA J. Numer. Anal., in press.