
The Weighted Least Square Scheme for Flows in
Complex Geometry
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Introduction

Compressible flows desribed by the set of Euler / Navier-Stokes
equations

Wt + F (W )x + G(W )y + H(W )z = Q(W ).

standard FV method in cell-centered arrangement,
unstructured (hybrid) meshes,
high-order piecewise polynomial reconstruction.
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The High order finite volume scheme

cell-wise interpolation polynomial Pi(~x ; W n),
interpolation to the cell interfaces,
evaluation of convective fluxes using interpolated values,
diamond cells for viscous fluxes.

Implicit high order FVM for Wt + F (W )x + G(W )y + H(W )z = 0:

F(Pi(~xij ; Wn),Pj(~xij ; Wn), ~Sij) ≈
∫

Ci∩Cj

(F (W ),G(W ),H(W )) · ~n dS,

R(Wn)i =
1
|Ci |

∑
j∈Ni

F(Pi(~xij ; Wn),Pj(~xij ; Wn), ~Sij) + ...

 ,
(

I + ∆t
∂R low

∂W

)(
Wn+1

i −Wn
i

)
= −∆tR(Wn)i .
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Weighted least square interpolation in 1D

Interpolation polynomial: Pi(x) = αi + βi(x − xi)

Conservativity: 1
h

∫
Ci

Pi(x) dx = ui

Accuracy: 1
h

∫
Ck

Pi(x) dx ≈ uk

Weighted LSQR

αi = ui ,

αi − hβi ≈ ui−1,

αi + hβi ≈ ui+1.

⇒

Find βi minimizing (αi = ui )

err2 =
∑

k=i−1,i+1

(Pi(xk )− uk )2 w2
k .

Weight w2
k = h−r

(|ui−uk |/h)p+hq .

Analysis: p+q ≥ 0, 1+p/q ≥ 0.
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Weighted least square interpolation

WLSQR reconstruction:

Pi := arg min
∑

j∈Mi

(
|Cj |un

j −
∫∫

Cj

Pi d~x

)2

· weight2
ij (un),

∫∫
Ci

Pi d~x = |Ci |un
i , weight2 =

h−r
ij

(|un
i − un

j |/hij)p + hq
ij

Properties of WLSQR
simple implementation in 2D/3D,
extensible to quadratic interpolations,
problem: choice of p, q, and r .
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Stencil selection

Compact stencil

Mc
i :=

{
j : dim(C i ∩ C j) = d − 1

}
.

3-4 cells in 2D, 4-8 cells in 3D.

Wide stencil

Mw
i :=

{
j : dim(C i ∩ C j) > 0 ∧ j 6= i

}
.

8-12 cells in 2D, 26-75 cells in 3D.

“Star” stencil

Ms
i := ∪j∈Mc

i
Mc

j − {i}.
9-12 cells in 2D, 15-22 cells in 3D.
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Jiří Fürst (CTU in Prague) The WLSQR Scheme FVCA5 7 / 20



Stencil selection

Compact stencil

Mc
i :=

{
j : dim(C i ∩ C j) = d − 1

}
.

3-4 cells in 2D, 4-8 cells in 3D.

Wide stencil

Mw
i :=

{
j : dim(C i ∩ C j) > 0 ∧ j 6= i

}
.

8-12 cells in 2D, 26-75 cells in 3D.

“Star” stencil

Ms
i := ∪j∈Mc

i
Mc

j − {i}.
9-12 cells in 2D, 15-22 cells in 3D.
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Applications
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Inviscid flow around an aircraft

Mesh (www.cgns.org)
Unstructured terahedral mesh

528 915 terahedrals,
1 071 658 faces,
97 104 nodes.

Boundary conditions
Freestream M∞ = 0.9, α∞ = 1◦.

Intake p = 0.95p∞.
Exhaust p = p∞, T = T∞,

M = 1.2, α = 0.
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Flow around an aircraft

Solver settings:

Star stencil,
HLLC flux,
WLSQR weights
p,q, r = 4,−2,3,
1.3 GB RAM,
2 x CPU Intel X5365
Local time stepping,
CFL = 25.
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Flow around an aircraft - surface Mach number
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Turbulent flow around the ONERA M6 wing

Mesh
Unstructured hybrid mesh

1.6M elements,
4M faces,
700k nodes.

Flow field
Freestream M∞ = 0.8395,

α∞ = 3.06◦,
Re = 11 · 106,
µT < 0.2µL.

Turbulence model S-A.
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Turbulent flow around the M6 wing

Solver settings:

Star stencil,
HLLC flux,
WLSQR weights
p,q, r = 4,−2,3,
GMRES solver with ILU,
7.5 GB RAM,
2 x CPU Intel X5365
Local time stepping,
CFL = 25.
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Turbulent flow around the M6 wing
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WLSQR revisited
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New version of the WLSQR interpolation

Weighted ENO schemes:
Better convergence to steady state than ENO,
Higher order of accuracy with properly chosen weights.

Question: is it possible to gain an order of accuracy within WLSQR
framework?

Answer: YES! At least for some cases.

Jiří Fürst (CTU in Prague) The WLSQR Scheme FVCA5 16 / 20



New version of the WLSQR interpolation

Weighted ENO schemes:
Better convergence to steady state than ENO,
Higher order of accuracy with properly chosen weights.

Question: is it possible to gain an order of accuracy within WLSQR
framework?
Answer: YES! At least for some cases.
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New version of the WLSQR interpolation in 1D

Old WLSQR

Pi(x) = αi + βi(x − xi)

αi = ui ,
βi by WLSQR.

New WLSQR

Pi(x) = αi + βi(x − xi)

αi , βi by WLSQR,
weights optimized in order to
minimize errors at xi±1/2
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New version of the WLSQR interpolation in 1D
Weighted least square system:

αi ≈ ui , (1)
wL(αi − βih) ≈ wLui−1, (2)
wR(αi + βih) ≈ wRui+1. (3)

Solution (assuming wL = wR = w):

αi =
1

1 + 2w2

[
ui + w2(ui+1 + ui−1)

]
, (4)

βi =
ui+1 − ui−1

2h
. (5)

Comparing with Taylor based expansions:
Optimized weights for new WLSQR in 1D

w2
L/R = 0.1 + O(h) for smooth data.
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Preliminary example - linear convection in 1D

Old WLSQR: weights with p = 4, r = 2, q = −2.
New WLSQR w2

L/R = 0.1h−r

(|ui−ui±1|/h)p+hq , with p = 4, r = 2, q = −2.

ut + ux = 0, x ∈ [0,1], u(x ,0) = sin(2πx), periodical BC

h Old WLSQR New WLSQR
||u − u∗||1 EOC ||u − u∗||1 EOC

1/32 4.393e-2 - 6.204e-3 -
1/64 1.108e-2 1.99 6.359e-4 3.28

1/128 2.774e-3 2.00 5.371e-5 3.56
1/256 6.935e-4 2.00 5.143e-6 3.38
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Conclusions

WLSQR scheme in 3D
the extension to 3D was straightforward,
the difference is mainly in the stencil construction,
the convergence to steady state is still very good,

New WLSQR scheme
Optimized weights in 1D⇒ third order scheme with piecewise
linear interpolations.
Extension to multidimensional case (for triangular/terahedral cells)
- work in progress.
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