The Weighted Least Square Scheme for Flows in Complex Geometry

Jiří Fürst

Departement of Technical Mathematics Czech Technical University in Prague

Finite Volumes for Complex Applications V

Jiří Fürst (CTU in Prague)

The WLSQR Scheme

FVCA5 1 / 20

4 3 5 4 3 5

Outline

The implicit WLSQR scheme

- Basic FV scheme
- Weighted least square reconstruction
- Stencil selection

Applications

- Inviscid transonic flow around an aircraft
- Turbulent flow around the ONERA M6 wing

WLSQR revisited

- Idea of new WLSQR interpolation
- Example linear convection in 1D

Introduction

Compressible flows desribed by the set of Euler / Navier-Stokes equations

$$W_t + F(W)_x + G(W)_y + H(W)_z = Q(W).$$

Introduction

Compressible flows desribed by the set of Euler / Navier-Stokes equations

$$W_t + F(W)_x + G(W)_y + H(W)_z = Q(W).$$

- standard FV method in cell-centered arrangement,
- unstructured (hybrid) meshes,
- high-order piecewise polynomial reconstruction.

< 回 > < 回 > < 回 >

The High order finite volume scheme

- cell-wise interpolation polynomial $P_i(\vec{x}; W^n)$,
- interpolation to the cell interfaces,
- evaluation of convective fluxes using interpolated values,
- diamond cells for viscous fluxes.

Implicit high order FVM for $W_t + F(W)_x + G(W)_y + H(W)_z = 0$:

$$\mathcal{F}(P_i(\vec{x}_{ij}; \mathbf{W}^n), P_j(\vec{x}_{ij}; \mathbf{W}^n), \vec{S}_{ij}) \approx \int_{C_i \cap C_j} (F(W), G(W), H(W)) \cdot \vec{n} \, dS,$$

$$R(\mathbf{W}^n)_i = \frac{1}{|C_i|} \left[\sum_{j \in \mathcal{N}_i} \mathcal{F}(P_i(\vec{x}_{ij}; \mathbf{W}^n), P_j(\vec{x}_{ij}; \mathbf{W}^n), \vec{S}_{ij}) + \dots \right],$$

$$\left(I + \Delta t \frac{\partial R^{low}}{\partial W} \right) \left(\mathbf{W}_i^{n+1} - \mathbf{W}_i^n \right) = -\Delta t R(\mathbf{W}^n)_i.$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Weighted least square interpolation in 1D

Interpolation polynomial: $P_i(x) = \alpha_i + \beta_i(x - x_i)$

• Conservativity:
$$\frac{1}{h} \int_{C_i} P_i(x) \, dx = u_i$$

• Accuracy:
$$\frac{1}{h} \int_{C_k} P_i(x) \, dx \approx u_k$$

Weighted LSQR

 α_i α_i Find β_i minimizing ($\alpha_i = u_i$)

$$\alpha_{i} = u_{i},$$

$$-h\beta_{i} \approx u_{i-1},$$

$$+h\beta_{i} \approx u_{i+1}.$$

$$err^{2} = \sum_{k=i-1,i+1} (P_{i}(x_{k}) - u_{k})^{2} w_{k}^{2}$$

$$Weight w_{k}^{2} = \frac{h^{-r}}{(|u_{i} - u_{k}|/h)^{p} + h^{q}}.$$

Analysis: $p+q \ge 0$, $1+p/q \ge 0$.

A (10) A (10) A (10)

Weighted least square interpolation

WLSQR reconstruction:

$$P_{i} := \arg\min\sum_{j \in \mathcal{M}_{i}} \left(|C_{j}|u_{j}^{n} - \iint_{C_{j}} P_{i} d\vec{x} \right)^{2} \cdot weight_{ij}^{2}(u^{n}),$$
$$\iint_{C_{i}} P_{i} d\vec{x} = |C_{i}|u_{i}^{n}, \quad weight^{2} = \frac{h_{ij}^{-r}}{(|u_{i}^{n} - u_{j}^{n}|/h_{ij})^{p} + h_{ij}^{q}}$$

Properties of WLSQR

- simple implementation in 2D/3D,
- extensible to quadratic interpolations,
- problem: choice of *p*, *q*, and *r*.

- 4 E b

Stencil selection

Compact stencil

•
$$\mathcal{M}_i^c := \left\{ j : \dim(\overline{C}_i \cap \overline{C}_j) = d - 1 \right\}$$

• 3-4 cells in 2D, 4-8 cells in 3D.

Jiří Fürst (CTU in Prague)

The WLSQR Scheme

FVCA5 7 / 20

Stencil selection

Compact stencil

•
$$\mathcal{M}_i^c := \left\{ j : \dim(\overline{C}_i \cap \overline{C}_j) = d - 1 \right\}.$$

• 3-4 cells in 2D, 4-8 cells in 3D.

Wide stencil

•
$$\mathcal{M}_i^w := \left\{ j : \dim(\overline{C}_i \cap \overline{C}_j) > 0 \land j \neq i \right\}.$$

Stencil selection

Compact stencil

•
$$\mathcal{M}_i^c := \left\{ j : \dim(\overline{C}_i \cap \overline{C}_j) = d - 1 \right\}$$

Wide stencil

•
$$\mathcal{M}_i^w := \left\{ j : \dim(\overline{C}_i \cap \overline{C}_j) > 0 \land j \neq i \right\}.$$

8-12 cells in 2D, 26-75 cells in 3D.

"Star" stencil

•
$$\mathcal{M}_i^{s} := \cup_{j \in \mathcal{M}_i^{c}} \mathcal{M}_j^{c} - \{i\}.$$

• 9-12 cells in 2D, 15-22 cells in 3D.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Applications

Jiří Fürst (CTU in Prague)

The WLSQR Scheme

イロト イヨト イヨト イヨト

Inviscid flow around an aircraft

Mesh (www.cgns.org)

Unstructured terahedral mesh

- 528 915 terahedrals,
- 1 071 658 faces,
- 97 104 nodes.

Boundary conditions

Freestream
$$M_{\infty} = 0.9$$
, $\alpha_{\infty} = 1^{\circ}$.
Intake $p = 0.95p_{\infty}$.
Exhaust $p = p_{\infty}$, $T = T_{\infty}$,
 $M = 1.2$, $\alpha = 0$.

Inviscid flow around an aircraft

Mesh (www.cgns.org)

Unstructured terahedral mesh

- 528 915 terahedrals,
- 1 071 658 faces,
- 97 104 nodes.

Boundary conditions

Freestream
$$M_{\infty} = 0.9$$
, $\alpha_{\infty} = 1^{\circ}$.
Intake $p = 0.95p_{\infty}$.
Exhaust $p = p_{\infty}$, $T = T_{\infty}$,
 $M = 1.2$, $\alpha = 0$.

Inviscid flow around an aircraft

Mesh (www.cgns.org)

Unstructured terahedral mesh

- 528 915 terahedrals,
- 1 071 658 faces,
- 97 104 nodes.

Boundary conditions

Freestream
$$M_{\infty} = 0.9$$
, $\alpha_{\infty} = 1^{\circ}$.
Intake $p = 0.95p_{\infty}$.
Exhaust $p = p_{\infty}$, $T = T_{\infty}$,
 $M = 1.2$, $\alpha = 0$.

Flow around an aircraft

Solver settings:

- Star stencil,
- HLLC flux,
- WLSQR weights *p*, *q*, *r* = 4, −2, 3,
- 1.3 GB RAM,
- 2 x CPU Intel X5365
- Local time stepping,
- CFL = 25.

FVCA5 10 / 20

Flow around an aircraft - surface Mach number

Turbulent flow around the ONERA M6 wing

Mesh

Unstructured hybrid mesh

- 1.6M elements,
- 4*M* faces,
- 700k nodes.

Flow field

Freestream $M_{\infty} = 0.8395$, $\alpha_{\infty} = 3.06^{\circ}$, $Re = 11 \cdot 10^{6}$, $\mu_T < 0.2\mu_L$. Turbulence model S-A.

一日

Turbulent flow around the ONERA M6 wing

Mesh

Unstructured hybrid mesh

- 1.6M elements,
- 4*M* faces,
- 700k nodes.

Flow field

Freestream $M_{\infty} = 0.8395$, $\alpha_{\infty} = 3.06^{\circ}$, $Re = 11 \cdot 10^{6}$, $\mu_T < 0.2\mu_L$. Turbulence model S-A.

Turbulent flow around the ONERA M6 wing

Mesh

Unstructured hybrid mesh

- 1.6M elements,
- 4*M* faces,
- 700k nodes.

Flow field

Freestream $M_{\infty} = 0.8395$, $\alpha_{\infty} = 3.06^{\circ}$, $Re = 11 \cdot 10^{6}$, $\mu_T < 0.2\mu_L$. Turbulence model S-A.

A B F A B F

Turbulent flow around the M6 wing

Solver settings:

- Star stencil,
- HLLC flux,
- WLSQR weights *p*, *q*, *r* = 4, -2, 3,
- GMRES solver with ILU,
- 7.5 GB RAM,
- 2 x CPU Intel X5365
- Local time stepping,
- CFL = 25.

Turbulent flow around the M6 wing

Jiří Fürst (CTU in Prague)

FVCA5 14 / 20

WLSQR revisited

Jiří Fürst (CTU in Prague)

The WLSQR Scheme

2 FVCA5 15/20

ъ

• • • • • • • • • • • •

New version of the WLSQR interpolation

Weighted ENO schemes:

- Better convergence to steady state than ENO,
- Higher order of accuracy with properly chosen weights.

Question: is it possible to gain an order of accuracy within WLSQR framework?

New version of the WLSQR interpolation

Weighted ENO schemes:

- Better convergence to steady state than ENO,
- Higher order of accuracy with properly chosen weights.

Question: is it possible to gain an order of accuracy within WLSQR framework? Answer: YES! At least for some cases.

New version of the WLSQR interpolation in 1D

α_i = u_i,
 β_i by WLSQR.

Jiří Fürst (CTU in Prague)

FVCA5 17 / 20

3 + 4 = +

New version of the WLSQR interpolation in 1D

$$P_i(\mathbf{x}) = \alpha_i + \beta_i(\mathbf{x} - \mathbf{x}_i)$$

α_i = u_i,
 β_i by WLSQR.

$$P_i(\mathbf{x}) = \alpha_i + \beta_i(\mathbf{x} - \mathbf{x}_i)$$

- α_i , β_i by WLSQR,
- weights optimized in order to minimize errors at x_{i±1/2}

A > + = + + =

New version of the WLSQR interpolation in 1D

Weighted least square system:

$$\alpha_i \approx u_i, \tag{1}$$

$$w_L(\alpha_i - \beta_i h) \approx w_L u_{i-1},$$
 (2)

$$w_R(\alpha_i + \beta_i h) \approx w_R u_{i+1}.$$
 (3)

Solution (assuming $w_L = w_R = w$):

$$\alpha_{i} = \frac{1}{1+2w^{2}} \left[u_{i} + w^{2}(u_{i+1} + u_{i-1}) \right], \qquad (4)$$

$$\beta_{i} = \frac{u_{i+1} - u_{i-1}}{2h}. \qquad (5)$$

Comparing with Taylor based expansions:

Optimized weights for new WLSQR in 1D

 $w_{L/R}^2 = 0.1 + O(h)$ for smooth data.

A (10) A (10) A (10)

Preliminary example - linear convection in 1D

- Old WLSQR: weights with p = 4, r = 2, q = -2.
- New WLSQR $w_{L/R}^2 = \frac{0.1h^{-r}}{(|u_i u_{i\pm 1}|/h)^{\rho} + h^q}$, with p = 4, r = 2, q = -2.

h	Old WLSQR		New WLSQR	
	$ u - u^* _1$	EOC	$ u - u^* _1$	EOC
1/32	4.393e-2	-	6.204e-3	-
1/64	1.108e-2	1.99	6.359e-4	3.28
1/128	2.774e-3	2.00	5.371e-5	3.56
1/256	6.935e-4	2.00	5.143e-6	3.38

Conclusions

WLSQR scheme in 3D

- the extension to 3D was straightforward,
- the difference is mainly in the stencil construction,
- the convergence to steady state is still very good,

New WLSQR scheme

- Optimized weights in 1D ⇒ third order scheme with piecewise linear interpolations.
- Extension to multidimensional case (for triangular/terahedral cells)
 - work in progress.

A B F A B F