Discretization schemes for linear diffusion operators on general nonconforming meshes

R. Eymard¹, **T.** Gallouët² and **R.** Herbin²

¹Université Paris-Est, France, ²Université de Provence, France

robert.eymard@univ-mlv.fr, thierry.gallouet, raphaele.herbin@cmi.univ-mrs.fr

1. Objectives

Approximation of the solution u to

 $u \in H^1_0(\Omega),$ $\begin{cases} u \in H_0^1(\Omega), \\ \int_{\Omega} \Lambda(\boldsymbol{x}) \nabla u(\boldsymbol{x}) \cdot \nabla v(\boldsymbol{x}) d\boldsymbol{x} = \int_{\Omega} f(\boldsymbol{x}) v(\boldsymbol{x}) d\boldsymbol{x} \quad \forall v \in H_0^1(\Omega) \end{cases}$

with constraints:

• Any type of grid (conforming or not), 2D or 3D

• sparse, symmetric, positive and definite matrix

• approximation of u and ∇u (with convergence and error estimate)

5. Convergence of the approximate solution

Non degeneracy of the discretization. $h_{\mathcal{D}} = \sup\{\operatorname{diam}(K), K \in \mathcal{M}\}$

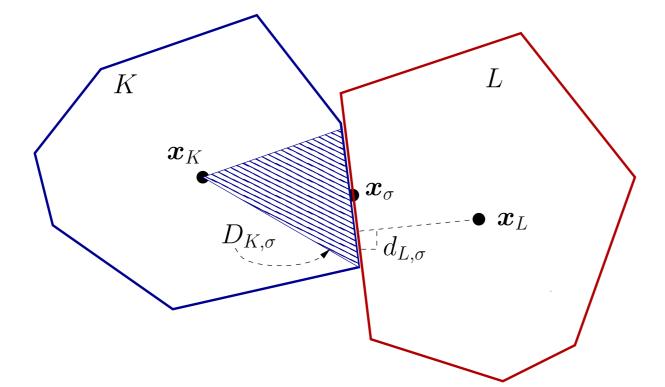
$$\theta_{\mathcal{D}} = \max\left(\max_{\sigma \in \mathcal{E}_{\text{int}}, K, L \in \mathcal{M}_{\sigma}} \frac{d_{K,\sigma}}{d_{L,\sigma}}, \max_{K \in \mathcal{M}, \sigma \in \mathcal{E}_{K}} \frac{h_{K}}{d_{K,\sigma}}\right)$$

$$\theta_{\mathcal{D},\mathcal{B}} = \max\left(\theta_{\mathcal{D}}, \max_{K \in \mathcal{M}, \sigma \in \mathcal{E}_{K} \cap \mathcal{B}} \frac{\sum_{L \in \mathcal{M}} |\beta_{\sigma}^{L}| |\boldsymbol{x}_{L} - \boldsymbol{x}_{\sigma}|^{2}}{h_{K}^{2}}\right)$$

Let $\theta > 0$ and $u_{\mathcal{D}}$ the approximate solution with \mathcal{D} and \mathcal{B} such that $\theta_{\mathcal{D},\mathcal{B}} \leq \theta$. Then $\Pi_{\mathcal{M}} u_{\mathcal{D}}$ converges in $L^2(\Omega)$ to the unique solution u and $\nabla_{\mathcal{D}} u_{\mathcal{D}}$ converges to ∇u in $L^2(\Omega)^d$ as $h_{\mathcal{D}} \to 0$.

2. Discrete unknowns

Discretization: $\mathcal{D} = (\mathcal{M}, \mathcal{E}, \mathcal{P})$ (control volumes, interfaces and points)



Discrete unknowns: $(v_K)_{K \in \mathcal{M}}$ and $(v_\sigma)_{\sigma \in \mathcal{E}}$

 $X_{\mathcal{D}} = \{ v = ((v_K)_{K \in \mathcal{M}}, (v_\sigma)_{\sigma \in \mathcal{E}}), v_K \in \mathbb{R}, v_\sigma \in \mathbb{R} \}$

 $X_{\mathcal{D},0} = \{ v \in X_{\mathcal{D}} \text{ such that } v_{\sigma} = 0, \forall \sigma \in \mathcal{E}_{ext} \}$

 $H_{\mathcal{M}}(\Omega) \subset L^2(\Omega)$: set of piecewise constant functions on the control volumes

 $\Pi_{\mathcal{M}} v \in H_{\mathcal{M}}(\Omega)$: piecewise constant function $\Pi_{\mathcal{M}} v(\boldsymbol{x}) = v_K$ for a.e. $\boldsymbol{x} \in K$

3. Discrete gradient

For $u \in X_{\mathcal{D}}$, construction of a discrete gradient:

• Geometric formula. For $K \in \mathcal{M}$ (using x_{σ} , center of σ):

$$\sum_{\sigma \in \mathcal{E}_K} \mathbf{m}(\sigma) \mathbf{n}_{K,\sigma} (\boldsymbol{x}_{\sigma} - \boldsymbol{x}_K)^T = \mathbf{m}(K) \mathrm{Id}$$

Discrete norms

- Norm in $X_{\mathcal{D}}$:

$$\forall v \in X_{\mathcal{D}}, \ |v|_X^2 = \sum_{K \in \mathcal{M}} \sum_{\sigma \in \mathcal{E}_K} \frac{\mathrm{m}(\sigma)}{d_{K,\sigma}} (v_\sigma - v_K)^2$$

- Norm in $H_{\mathcal{M}}(\Omega)$ (Discrete H_0^1 -norm)

For $v \in H_{\mathcal{M}}(\Omega)$ and for $\sigma \in \mathcal{E}_{int}$ with $\mathcal{M}_{\sigma} = \{K, L\}$, $D_{\sigma}v = |v_K - v_L|$ and $d_{\sigma} = d_{K,\sigma} + d_{L,\sigma}$ For $\sigma \in \mathcal{E}_{ext}$ with $\mathcal{M}_{\sigma} = \{K\}$, $D_{\sigma}v = |v_K|$ and $d_{\sigma} = d_{K,\sigma}$

$$\forall v \in H_{\mathcal{M}}(\Omega), \ \|v\|_{1,2,\mathcal{M}} = \sum_{K \in \mathcal{M}} \sum_{\sigma \in \mathcal{E}_K} m_{\sigma} d_{K,\sigma} (\frac{D_{\sigma} v}{d_{\sigma}})^2$$

- Comparison of the norms in $X_{\mathcal{D},0}$

Thanks to the Cauchy-Schwarz inequality:

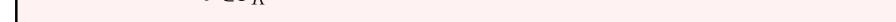
 $\|\Pi_{\mathcal{M}}v\|_{1,2,\mathcal{M}}^2 \le |v|_X^2, \ \forall v \in X_{\mathcal{D},0}.$

• Equivalence of norms

Thanks to

$$\left(R_{K,\sigma}u\right)^2 \geq \frac{\lambda d}{1+\lambda} \left(\frac{u_{\sigma}-u_K}{d_{K,\sigma}}\right)^2 - \lambda d|\nabla_K u|^2 \left(\frac{|\boldsymbol{x}_{\sigma}-\boldsymbol{x}_K|}{d_{K,\sigma}}\right)^2.$$

Equivalence of norms:



• Rough gradient. For $K \in \mathcal{M}$:

$$\nabla_{K} u = \frac{1}{\mathrm{m}(K)} \sum_{\sigma \in \mathcal{E}_{K}} \mathrm{m}(\sigma) (u_{\sigma} - u_{K}) \mathbf{n}_{K,\sigma}$$

• Stabilized gradient. For $K \in \mathcal{M}$ and $\sigma \in \mathcal{E}_K$:

with
$$\begin{split} \nabla_{K,\sigma} u &= \nabla_{K} u + R_{K,\sigma} u \; \mathbf{n}_{K,\sigma}, \\ R_{K,\sigma} u &= \frac{\sqrt{d}}{d_{K,\sigma}} \left(u_{\sigma} - u_{K} - \nabla_{K} u \cdot (\boldsymbol{x}_{\sigma} - \boldsymbol{x}_{K}) \right) \end{split}$$

 $\nabla_{\mathcal{D}} u(\boldsymbol{x}) = \nabla_{K,\sigma} u$ for a.e. $\boldsymbol{x} \in D_{K,\sigma}$

4. Numerical scheme, SUSHI

• Reduction of the number of unknowns. $\mathcal{E}_{int} = \mathcal{B} \cup \mathcal{H}, \mathcal{H} = \mathcal{E}_{int} \setminus \mathcal{B}.$

 $X_{\mathcal{D},\mathcal{B}} = \{ v \in X_{\mathcal{D},0}, v_{\sigma} = \sum_{K \in \mathcal{M}} \beta_{\sigma}^{K} v_{K}, \sum_{K \in \mathcal{M}} \beta_{\sigma}^{K} = 1 \& \boldsymbol{x}_{\sigma} = \sum_{K \in \mathcal{M}} \beta_{\sigma}^{K} \boldsymbol{x}_{K}, \forall \sigma \in \mathcal{B} \}$

$\alpha |u|_X \le \|\nabla_{\mathcal{D}} u\|_{L^2(\Omega)} \le \beta |u|_X, \ \forall u \in X_{\mathcal{D}}$

• Estimate on $u_{\mathcal{D}}$, solution of the scheme

Taking $v = u_{\mathcal{D}}$ in the scheme and using the preceding equivalence of norms and a discrete Sobolev inequality lead to an estimate on $u_{\mathcal{D}}$ in L^2 and for the norm of $X_{\mathcal{D}}$

• Regularity of the possible limit and convergence of the gradient

Let \mathcal{F} be a family of discretization and, for $\mathcal{D} \in \mathcal{F}$, $u_{\mathcal{D}}$ (not necessarily solution of the scheme) such that:

> • $u_{\mathcal{D}} \in X_{\mathcal{D},0}$ • $|u_{\mathcal{D}}|_X \le C$ • $\exists u \in L^2(\Omega)$ with $\lim_{h_{\mathcal{D}} \to 0} \|\Pi_{\mathcal{M}} u_{\mathcal{D}} - u\|_{L^2(\Omega)} = 0$

Then $u \in H^1_0(\Omega)$ and $\nabla_{\mathcal{D}} u_{\mathcal{D}}$ weakly converges in $L^2(\Omega)^d$ to $\nabla u \text{ as } h_{\mathcal{D}} \to 0$

• Passing to the limit in the discrete equation

For $\varphi \in C2_c(\Omega, \mathbb{R})$, let:

1. $P_{\mathcal{D}}\varphi = ((\varphi(\boldsymbol{x}_K))_{K \in \mathcal{M}}, (\varphi(\boldsymbol{x}_{\sigma}))_{\sigma \in \mathcal{E}})$ (so that $P_{\mathcal{D}}\varphi \in X_{\mathcal{D}})$)

- 2. $P_{\mathcal{D},\mathcal{B}}\varphi$ the element $v \in X_{\mathcal{D},\mathcal{B}}$ such that $v_K = \varphi(\boldsymbol{x}_K)$ for all $K \in \mathcal{M}$, $v_\sigma = 0$ for all $\sigma \in \mathcal{E}_{ext}$, $v_{\sigma} = \sum_{K \in \mathcal{M}} \beta_{\sigma}^{K} \varphi(\boldsymbol{x}_{K})$ for all $\sigma \in \mathcal{B}$ and $v_{\sigma} = \varphi(\boldsymbol{x}_{\sigma})$ for all $\sigma \in \mathcal{E}_{int} \setminus \mathcal{B}$

• Discrete equations.

 $card(\mathcal{M}) + card(\mathcal{H})$ equations and unknowns u_K for $K \in \mathcal{M}$ and u_σ for $\sigma \in \mathcal{H}$

Find $u \in X_{\mathcal{D},\mathcal{B}}$ such that: $\int_{\Omega} \Lambda \nabla_{\mathcal{D}} u \cdot \nabla_{\mathcal{D}} v d\boldsymbol{x} = \int_{\Omega} f \ \Pi_{\mathcal{M}} v d\boldsymbol{x}, \ \forall v \in X_{\mathcal{D},\mathcal{B}}$

The so-called "local conservativity" is ensured for all $\sigma \in \mathcal{H}$ (taking in the scheme v associated to σ) but not for $\sigma \in \mathcal{B}$

In 2d, for $\Lambda = Id$ and with triangles or rectangles, the scheme is the classical finite volume scheme

3. $P_{\mathcal{M}}\varphi(\boldsymbol{x}) = \varphi(\boldsymbol{x}_K)$ for a.e. $\boldsymbol{x} \in K$, for all $K \in \mathcal{M}$

Taking $v = P_{\mathcal{D},\mathcal{B}}\varphi$ as test function in the scheme and using $\Pi_{\mathcal{M}}(P_{\mathcal{D},\mathcal{B}}) = P_{\mathcal{M}}\varphi$, the conclusion follows with the two following consistency results:

$$\|\nabla_{\mathcal{D}} P_{\mathcal{D}} \varphi - \nabla \varphi\|_{(L^{\infty}(\Omega))^{d}} \le Ch_{\mathcal{D}}$$
$$\lim_{h_{\mathcal{D}} \to 0} \|P_{\mathcal{D}, \mathcal{B}} \varphi - P_{\mathcal{D}} \varphi\|_{X} = 0$$

Leading to:

$$\lim_{h_{\mathcal{D}}\to 0} \|\nabla_{\mathcal{D}} P_{\mathcal{D}, \mathcal{B}} \varphi - \nabla \varphi\|_{(L^2(\Omega))^d} = 0$$