

Modeling Thermal Behavior of Bioreactor Landfills Before Leachate Recirculation

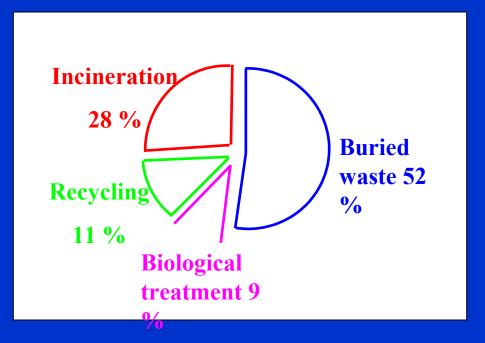
Shabnam Gholamifard, Robert Eymard and Christian Duquennoi

□Introduction to bioreactor landfills

Objectives of modeling

Mathematical model

- Biological model of degradation and gas production
- Numerical techniques
 - Finite Volumes method


Numerical results

Application to a bioreactor landfill

Conclusions and perspectives

Introduction to bioreactor landfills

Waste production in France (Ademe 2002): 46 Mt /y

Landfill: A site for the disposal of waste materials (paper, kitchen waste, textile, wood,...) by burial

Introduction to bioreactor landfills

What is a Bioreactor Landfill?

A landfill site which uses enhanced microbiological treatments to:

>Accelerate degradation rate

Reduce the time of landfill stabilization

The most common method: Leachate recirculation Waste jus!

Objectives of modeling

- * Predict and control the gas and leachate production
- * Study the biological and thermal behavior

* effects of saturation and temperature

- * Optimize the leachate injection process
- * Minimize the degradation and stabilization time

Optimize the time and cost of monitoring

□Introduction to bioreactor landfills

Objectives of modeling

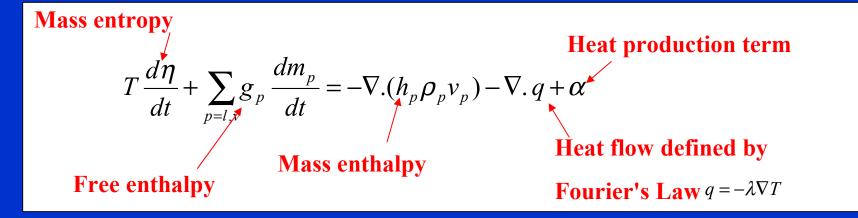
Mathematical model

- Biological model of degradation and gas production
- Numerical techniques
 - Finite Volumes method

ONUMERICAL RESULTS

Application to a bioreactor landfill

Conclusions and perspectives

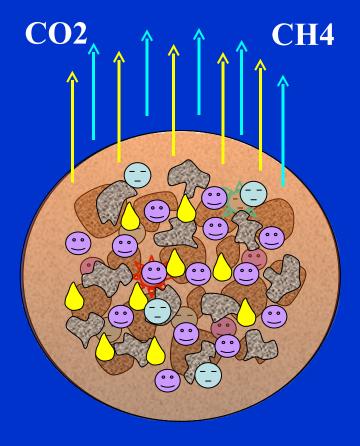

Mathematical model

Two-phase flow model

Mass Conservation

$$\frac{\partial m_i}{\partial t} + \nabla (\rho_i U_i) = 0 \qquad m_l = \phi \ S \ \rho_l \ , \ m_g = \phi \ (1 - S) \ \rho_g$$

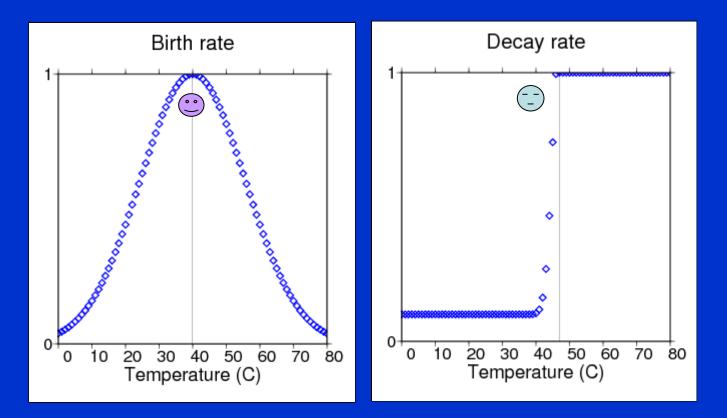
Darcy law


Energy Conservation

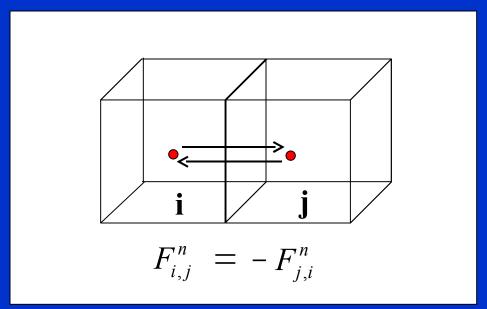
Mathematical model-Assumptions

- The landfill: a three-phases porous medium
- The solid phase: non-deformable
- The fluid phases: immiscible
- Darcy's law: for both fluid phases
- Thermal radiation: neglected
- Thermal equilibrium

Biological model


Biological model

S


Hydrolysis of
olid substrate:
$$\frac{dA}{dt} = -\sum_{i=1}^{3} [A_i \cdot \lambda_i(T) \cdot fs]$$
Volatile Fatty
Acid:
$$\frac{dA_s}{dt} = -\beta \frac{dA}{dt} - \mu_{App}(T) \cdot gs \left(\frac{A_s}{K_{s_A} + A_s}\right) X - \alpha_A \cdot q \frac{dA_s}{dZ}$$
Biomass:
$$\frac{dX}{dt} = Y \left(\frac{H_{App}(T)}{Birth} \cdot gs \cdot \frac{A_s}{K_{s_A} + A_s} \cdot X \right) - K_{B}(T) \cdot X - \alpha_A \cdot q \frac{dX}{dZ}$$
Biogas:
$$\frac{dB}{dt} = (1 - Y) \mu_{App}(T) \cdot gs \left(\frac{A_s}{K_{s_A} + A_s}\right) X$$
Heat:
$$\alpha_q = \beta \frac{H_{hyd}}{M_{VFA}} \cdot \frac{dA}{dt} + \frac{H_{meth}}{M_{meth}} \cdot \frac{\alpha_b}{2}$$

Biological model

$$\frac{dX}{dt} = Y \left(\underbrace{\mu_{A \not B \not P}}_{Birth} (T).gs. \frac{A_S}{K_{S_A} + A_S} . X \right) - \underbrace{K_{\not B}(T)}_{Decay} X - \alpha_X.q \frac{dX}{dZ}$$

Numerical Techniques- Finite Volumes Method

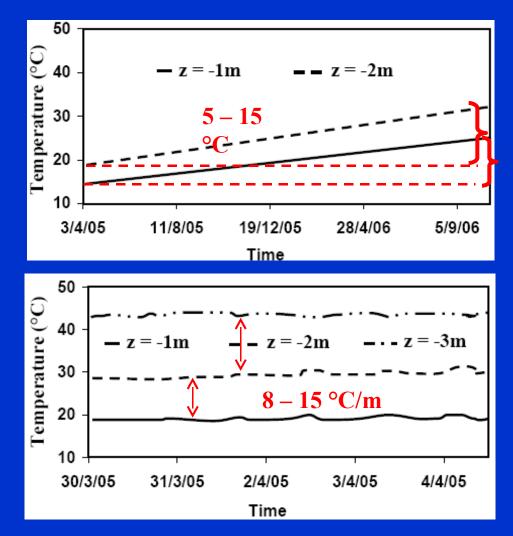
$$V_{i} \frac{m_{Pi}^{n+1} - m_{Pi}^{n}}{t^{n+1} - t^{n}} + \sum_{i|j} F_{wij}^{n+1} = 0$$

Heat Production
$$V_{i} \left[T_{i}^{n+1} \frac{\eta_{hi}^{n+1} - \eta_{hi}^{n}}{t^{n+1} - t^{n}} + \sum_{P=l,g} g_{P_{i}}^{n+1} \frac{m_{Pi}^{n+1} - m_{Pi}^{n}}{t^{n+1} - t^{n}} \right] + \sum_{i|j} F_{hij}^{n+1} = \overbrace{Q_{i}}^{n+1}$$

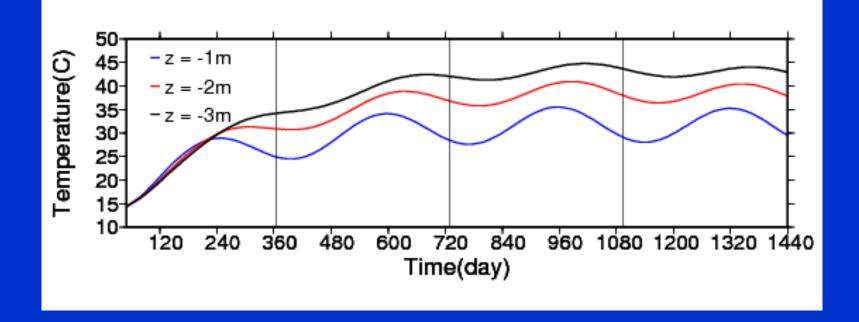
□Introduction to bioreactor landfills

Objectives of modeling

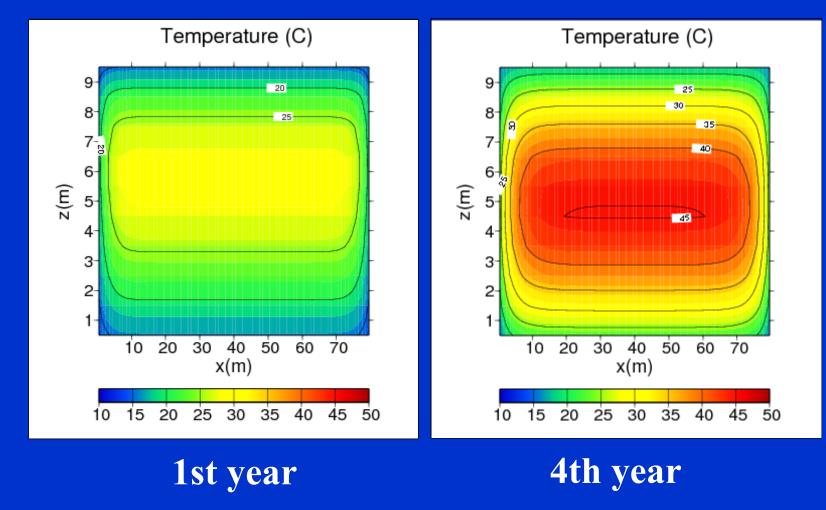
DMathematical model


- Biological model of degradation and gas production
- Numerical techniques
 - Finite Volumes method

Numerical results


Application to a bioreactor landfill

Conclusions and perspectives


Numerical results- Site observations

Numerical results

Numerical results

□Introduction to bioreactor landfills

Objectives of modeling

DMathematical model

- Biological model of degradation and gas production
- Numerical techniques
 - Finite Volumes method

ONUMERICAL RESULTS

Application to a bioreactor landfill

Conclusions and perspectives

Conclusion

This model is able to reproduce an appropriate thermal behavior

- The stable thermal condition is a result of:
 - bacterial growth and decay,
 - hydrolysis as a function of degradation kinetics,
 - inhibition of hydrolysis and methane production,
 - external temperature and seasonal changes.

>Validate the model by additional field and laboratory experiments

Study the biological behavior of bioreactor landfills with and without leachate recirculation

Thanks for your attention! Shabnam GHOLAMIFARD

June 2008