Motivation	Conservation laws	FV-schemes	Convergence result	Higher order	Prospects

Convergence Rate of Finite Volume Schemes for Hyperbolic Conservation Laws on Riemannian Manifolds

Jan Giesselmann

IANS, University of Stuttgart

5th International Symposium on Finite Volumes for Complex Applications

June 12th 2008

- Motivation
- A class of conservation laws on manifolds
- Finite volume schemes on Riemannian manifolds 3
- The convergence result
- Remark on higher oder schemes 5
- Prospects 6

Motivation Conservation laws FV-schemes Convergence result Higher order Prospects
Shallow water equations

in \mathbb{R}^2 :

$$\begin{pmatrix} h \\ hv \end{pmatrix}_t + \nabla \cdot \begin{pmatrix} hv \\ hv \otimes v + \frac{h^2}{2g} \end{pmatrix} = 0 \text{ in } \mathbb{R}^2 \times (0, T),$$

here g is a gravitational constant, h the height and v the velocity.

on the sphere S^2 :

$$\left(\begin{array}{c}h\\hv\end{array}\right)_t + \nabla_g \cdot \left(\begin{array}{c}hv\\hv\otimes v + \frac{h^2}{2g}\end{array}\right) = 0 \text{ in } S^2 \times (0, T),$$

where $\nabla_g \cdot$ denotes the divergence operator on the sphere. In polar coordinates $\nabla_g \cdot$ is given by

$$abla_{g} \cdot f := rac{1}{\sin heta} \left((f^{\phi} \sin heta)_{\phi} + (f^{ heta} \sin heta)_{ heta}
ight).$$

 Motivation
 Conservation laws
 FV-schemes
 Convergence result
 Higher order
 Prospects

 2. A class of conservation laws on manifolds

We will consider the scalar hyperbolic conservation law

$$u_t + \nabla_g \cdot \left(v(\cdot) \tilde{f}(u(\cdot)) \right) = 0, \quad \text{in } M \times \mathbb{R}_+, \\ u(\cdot, 0) = u_0, \quad \text{on } M \quad (P_M)$$

for $u = u(x, t) \in \mathbb{R}$, where v is a smooth vector-field with $\nabla_g \cdot v = 0$ and \tilde{f} depends locally Lipschitz continuous on u. Here M denotes a closed manifold with Riemannian metric g.

In the special case $M = \mathbb{R}^d$ the divergence coincides with the classical divergence. For brevity we define

$$f(x,u):=v(x)\tilde{f}(u).$$

Convergence res

Entropy solution

Definition:

 $u \in L^{\infty}(M imes \mathbb{R}_+)$ is called an **entropy solution** of (P_M) if

$$\int_{M \times \mathbb{R}_{+}} \left[|u - \kappa| \varphi_{t} + g_{x} (f(x, u \top \kappa) - f(x, u \bot \kappa), \nabla_{g} \varphi) \right] dv_{g} dt$$
$$+ \int_{M} |u_{0} - \kappa| \varphi(\cdot, 0) dv_{g} \ge 0$$

for all $\kappa \in \mathbb{R}$ and all $\varphi \in C_0^\infty(M imes \mathbb{R}_+, \mathbb{R}_+)$.

Note: Every entropy solution is a weak solution.

Convergence result

Higher order

Prospects

Existence and Uniqueness

Theorem(Ben-Artzi, LeFloch '06):

For $u_0 \in L^\infty(M)$ and

$$abla_g \cdot f(x,s) = 0 \ \forall s \in \mathbb{R}$$

there exists a unique entropy solution u of (P_M) .

If u, v are entropy solutions to some initial data u_0, v_0 respectively, it holds

$$\|v(\cdot,t)-u(\cdot,t)\|_{L^{1}(M)} \leq \|v_{0}-u_{0}\|_{L^{1}(M)}.$$

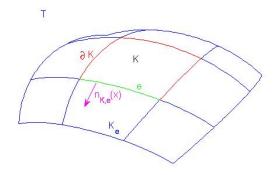
Motivation

Convergence resul

Higher order

Prospects

3. Finite volume schemes on Riemannian manifolds



Definition: For every $K \in \mathcal{T}^h$ and $e \in \partial K$ we consider a locally Lipschitz continuous **numerical flux function**

$$f_{K,e}: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

satisfying

•
$$f_{K,e}(u, u) = \frac{1}{|e|} \int_e g_x(f(x, u), n_{K,e}(x)) dv_e \quad \forall u \in \mathbb{R} \text{ (Consistency)},$$

•
$$f_{\mathcal{K},e}(u,v) = -f_{\mathcal{K}_e,e}(v,u) \quad \forall \, u,v \in \mathbb{R}$$
 (Conservation),

• $\frac{\partial}{\partial u} f_{\mathcal{K},e}(u,v) \ge 0$ and $\frac{\partial}{\partial v} f_{\mathcal{K},e}(u,v) \le 0 \quad \forall \, u,v \in \mathbb{R}$ (Monotonicity).

These conditions are e.g. fulfilled by the Lax-Friedrichs flux, for an appropriate viscosity coefficient.

Convergence resul

e result H

ler Pr

Semi-discrete scheme

We consider the

Semi-discrete scheme

$$\begin{aligned} & (u_{K})_{t}(t) &= -\sum_{e \in \partial K} \frac{|e|}{|K|} f_{K,e}(u_{K}(t), u_{K_{e}}(t)), \\ & u_{K}(0) &:= \frac{1}{|K|} \int_{K} u_{0}(x) dv_{g}, \qquad (P_{M,h}) \\ & u^{h}(x,t) &:= u_{K}(t), \text{ for } x \in K. \end{aligned}$$

Note: This scheme is always conservative and in the d = 1-case it is TVD. Furthermore

$$\mathrm{essinf}_{p\in M}u_0(p)\leq u^h(x,t)\leq \mathrm{esssup}_{p\in M}u_0(p)\quad \text{ for all }(x,t)\in M\times\mathbb{R}_+.$$

Theorem (Amorim, Ben-Artzi, LeFloch '05):

Let u be the entropy solution of (P_M) . Under some technical assumptions on f and the grid the approximate solution $u^h : M \times \mathbb{R}_+ \longrightarrow \mathbb{R}$ given by the finite volume method $(P_{M,h})$ satisfies

$$u_h \rightarrow u$$
 a.e.

when *h* tends to zero.

Note:

- The proof is actually done for a fully discrete scheme.
- Result for M = ℝⁿ : Coquel & LeFloch '95, Kröner & Rokyta '94, Kröner, Noelle & Rokyta '95.

Open question: Convergence rate

Convergence rates in \mathbb{R}^d

Theorem (Vila '94, Eymard, Gallouët, Ghilani, Herbin '98):

Let $u_0 \in L^{\infty}(\mathbb{R}^d) \cap \mathsf{BV}_{\mathsf{loc}}(\mathbb{R}^d)$ and provided some technical assumptions on f and the grid there is the following error estimate for the finite volume scheme $(P_{M,h})$:

For every compact $E \subset \mathbb{R}^d imes \mathbb{R}_+$ there exists $C(E, f, u_0) \geq 0$ such that

$$\int_E \left| u^h(x,t) - u(x,t) \right| \, dx \, dt \leq Ch^{\frac{1}{4}}.$$

Note: For d = 1 the exponent can be improved to $\frac{1}{2}$.

Idea: Modify the methods of Eymard et. al. to prove a $h^{\frac{1}{4}}$ -error estimate on manifolds of dimension $d \ge 2$ and a $h^{\frac{1}{2}}$ -error estimate for 1-dimensional manifolds.

Convergence rates on manifolds

Theorem (G. '07):

Consider the Cauchy Problem (P_M) on a *d*-dimensional Riemannian manifold (M, g) with d = 1, 2 and

- initial data $u_0 \in BV(M) \cap L^{\infty}(M)$.
- u be the entropy solution of (P_M)

• u^h the approximate solution given by the finite volume scheme $(P_{M,h})$ then we have the following error estimate: For every T > 0 exists a constant $C(M, g, f, u_0, T)$, such that

$$\int_{M \times [0,T]} \left| u^{h}(x,t) - u(x,t) \right| \, dv_{g} \, dt \leq \begin{cases} Ch^{\frac{1}{2}} & : \quad d = 1 \\ Ch^{\frac{1}{4}} & : \quad d = 2. \end{cases}$$

For $K \in \mathcal{T}^h, e \in \partial K$

$$C_{K,e} := \{(c,d) \in [u_K \perp u_{K_e}, u_K \top u_{K_e}]^2 : (u_{K_e} - u_K)(d-c) \ge 0\}.$$

Weak BV-estimate

Consider the Cauchy Problem (P_M) . Let u^h the approximate solution given by $(P_{M,h})$. There exists a constant $C(f, u_0, T, \alpha, M, g) > 0$, such that for *h* sufficiently small

$$\int_0^T \sum_{K \in \mathcal{T}^h} \sum_{e \in \partial K} \max_{(c,d) \in \mathcal{C}_{K,e}} |e| |f_{K,e}(c,d) - f_{K,e}(c,c)| dt \le \begin{cases} C & : \ d = 1 \\ Ch^{-\frac{1}{2}} & : \ d = 2. \end{cases}$$

The better estimate for d = 1 follows directly from the TVD property of the scheme.

Sketch of the proof

Entropy inequality for the approximate solution

For *h* sufficiently small there exists a constant C > 0, such that we have

$$\begin{split} &\int_{M\times\mathbb{R}_+} \left(|u^h - \kappa| |\varphi_t + g_x(f(x, u^h \top \kappa) - f(x, u^h \bot \kappa), \nabla_g \varphi) \, dv_g \, dt \\ &+ \int_M |u_0 - \kappa| \varphi(\cdot, 0) \, dv_g \\ &\geq \begin{cases} -Ch \|\nabla_g \varphi\|_{L^1} & : \ d = 1 \\ -Ch^{\frac{1}{2}} \|\nabla_g \varphi\|_{L^1} & : \ d = 2 \end{cases} \end{split}$$

for every $\kappa \in [\text{essinf } u_0, \text{esssup } u_0]$ and $\varphi \in C_0^{\infty}(M \times \mathbb{R}_+, \mathbb{R}_+).$

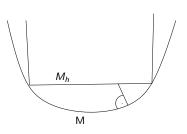
Then the proof is based on a doubling of variables argument.

 Motivation
 Conservation laws
 FV-schemes
 Convergence result
 Higher order
 Prospects

 Ideas for higher order schemes
 Ideas
 Prospects
 Ideas
 I

We need a notion of polynomial reconstruction. One idea:

- analysed by Dziuk and Elliot '07 for parabolic equations.
- Approximate M by a polyhedral surface M_h whose nodes lie on M and such that the normal projection from M to M_h is bijective.
- Do the reconstruction on M_h and project the polynomials to M.
- If we define the whole scheme on M_h, this introduces a geometry error of order h².



- Generalisation to Riemannian manifolds in higher dimensions.
- Construction of higher order schemes.
- Generalisation to manifolds with Lorentzian metric, to be able to treat problems from general relativity. (The well-posedness of such problems was treated by Ben Artzi & LeFloch).

To prove convergence rates for d = 2 we need the following properties of the grid

- Every K is a geodesicly convex, curved polygon.
- For $i \neq j$ the section $K_i \cap K_j$ is empty, a point or a common face.
- Each face is a segment of a geodesic line.
- There are constants α , h > 0, such that

$$\alpha h^2 \leq |K|,$$

 $\delta(K) \leq h,$
(1)
(2)

where $\delta(K)$ denotes the diameter of K.