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Shallow water equations

in R2 : (
h
hv

)
t

+∇ ·

(
hv

hv ⊗ v + h2

2g

)
= 0 in R2 × (0,T ),

here g is a gravitational constant, h the height and v the velocity.

on the sphere S2 :(
h
hv

)
t

+∇g ·

(
hv

hv ⊗ v + h2

2g

)
= 0 in S2 × (0,T ),

where ∇g · denotes the divergence operator on the sphere. In polar
coordinates ∇g · is given by

∇g · f :=
1

sin θ

(
(f φ sin θ)φ + (f θ sin θ)θ

)
.
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2. A class of conservation laws on manifolds

We will consider the scalar hyperbolic conservation law

ut +∇g ·
(
v(·)f̃ (u(·))

)
= 0, in M × R+,

u(·, 0) = u0, on M
(PM)

for u = u(x , t) ∈ R, where v is a smooth vector-field with ∇g · v = 0 and
f̃ depends locally Lipschitz continuous on u. Here M denotes a closed
manifold with Riemannian metric g .

In the special case M = Rd the divergence coincides with the classical
divergence. For brevity we define

f (x , u) := v(x)f̃ (u).
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Entropy solution

Definition:

u ∈ L∞(M × R+) is called an entropy solution of (PM) if∫
M×R+

[
|u − κ|ϕt + gx

(
f (x , u>κ)− f (x , u⊥κ),∇gϕ

)]
dvg dt

+

∫
M
|u0 − κ|ϕ(·, 0) dvg ≥ 0

for all κ ∈ R and all ϕ ∈ C∞
0 (M × R+, R+).

Note: Every entropy solution is a weak solution.
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Existence and Uniqueness

Theorem(Ben-Artzi, LeFloch ’06):

For u0 ∈ L∞(M) and

∇g · f (x , s) = 0 ∀s ∈ R

there exists a unique entropy solution u of (PM).
If u, v are entropy solutions to some initial data u0, v0 respectively, it holds

‖v(·, t)− u(·, t)‖L1(M) ≤ ‖v0 − u0‖L1(M).
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3. Finite volume schemes on Riemannian manifolds
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Numerical fluxes

Definition: For every K ∈ T h and e ∈ ∂K we consider a locally Lipschitz
continuous numerical flux function

fK ,e : R2 −→ R

satisfying

fK ,e(u, u) = 1
|e|
∫
e gx (f (x , u), nK ,e(x)) dve ∀ u ∈ R (Consistency),

fK ,e(u, v) = −fKe ,e(v , u) ∀ u, v ∈ R (Conservation),

∂
∂u fK ,e(u, v) ≥ 0 and ∂

∂v fK ,e(u, v) ≤ 0 ∀ u, v ∈ R (Monotonicity).

These conditions are e.g. fulfilled by the Lax-Friedrichs flux, for an
appropriate viscosity coefficient.
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Semi-discrete scheme

We consider the

Semi-discrete scheme

(uK )t(t) = −
∑

e∈∂K

|e|
|K |

fK ,e(uK (t), uKe (t)),

uK (0) :=
1

|K |

∫
K

u0(x)dvg , (PM,h)

uh(x , t) := uK (t), for x ∈ K .

Note: This scheme is always conservative and in the d = 1-case it is TVD.
Furthermore

essinfp∈Mu0(p) ≤ uh(x , t) ≤ esssupp∈Mu0(p) for all (x , t) ∈ M × R+.
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Convergence on manifolds

Theorem (Amorim, Ben-Artzi, LeFloch ’05):

Let u be the entropy solution of (PM). Under some technical assumptions
on f and the grid the approximate solution uh : M × R+ −→ R given by
the finite volume method (PM,h) satisfies

uh → u a.e.

when h tends to zero.

Note:

The proof is actually done for a fully discrete scheme.

Result for M = Rn : Coquel & LeFloch ’95, Kröner & Rokyta ’94,
Kröner, Noelle & Rokyta ’95.

Open question: Convergence rate
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Convergence rates in Rd

Theorem (Vila ’94, Eymard, Gallouët, Ghilani, Herbin ’98):

Let u0 ∈ L∞(Rd) ∩ BVloc(Rd) and provided some technical assumptions
on f and the grid there is the following error estimate for the finite volume
scheme (PM,h):
For every compact E ⊂ Rd × R+ there exists C (E , f , u0) ≥ 0 such that∫

E

∣∣∣uh(x , t)− u(x , t)
∣∣∣ dx dt ≤ Ch

1
4 .

Note: For d = 1 the exponent can be improved to 1
2 .

Idea: Modify the methods of Eymard et. al. to prove a h
1
4 -error estimate

on manifolds of dimension d ≥ 2 and a h
1
2 -error estimate for 1-dimensional

manifolds.
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Convergence rates on manifolds

Theorem (G. ’07):

Consider the Cauchy Problem (PM) on a d-dimensional Riemannian
manifold (M, g) with d = 1, 2 and

initial data u0 ∈ BV(M) ∩ L∞(M).

u be the entropy solution of (PM)

uh the approximate solution given by the finite volume scheme (PM,h)

then we have the following error estimate:
For every T > 0 exists a constant C (M, g , f , u0,T ), such that∫

M×[0,T ]

∣∣∣uh(x , t)− u(x , t)
∣∣∣ dvg dt ≤

{
Ch

1
2 : d = 1

Ch
1
4 : d = 2.
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Sketch of the proof

For K ∈ T h, e ∈ ∂K

CK ,e := {(c , d) ∈ [uK⊥uKe , uK>uKe ]
2 : (uKe − uK )(d − c) ≥ 0}.

Weak BV-estimate

Consider the Cauchy Problem (PM). Let uh the approximate solution given
by (PM,h). There exists a constant C (f , u0,T , α,M, g) > 0, such that for
h sufficiently small∫ T

0

∑
K∈T h

∑
e∈∂K

max
(c,d)∈CK ,e

|e||fK ,e(c , d)−fK ,e(c , c)| dt ≤

{
C : d = 1

Ch−
1
2 : d = 2.

The better estimate for d = 1 follows directly from the TVD property of
the scheme.
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Sketch of the proof

Entropy inequality for the approximate solution

For h sufficiently small there exists a constant C > 0, such that we have∫
M×R+

(
|uh − κ)|ϕt + gx(f (x , uh>κ)− f (x , uh⊥κ),∇gϕ) dvg dt

+

∫
M
|u0 − κ|ϕ(·, 0) dvg

≥

{
−Ch‖∇gϕ‖L1 : d = 1

−Ch
1
2 ‖∇gϕ‖L1 : d = 2

for every κ ∈ [essinf u0, esssup u0] and ϕ ∈ C∞
0 (M × R+, R+).

Then the proof is based on a doubling of variables argument.
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Ideas for higher order schemes

We need a notion of polynomial reconstruction. One idea:

analysed by Dziuk and Elliot ’07 for
parabolic equations.

Approximate M by a polyhedral surface
Mh whose nodes lie on M and such
that the normal projection from M to
Mh is bijective.

Do the reconstruction on Mh and
project the polynomials to M.

If we define the whole scheme on Mh,
this introduces a geometry error of
order h2.

.

M

Mh
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Prospects

Generalisation to Riemannian manifolds in higher dimensions.

Construction of higher order schemes.

Generalisation to manifolds with Lorentzian metric, to be able to
treat problems from general relativity. (The well-posedness of such
problems was treated by Ben Artzi & LeFloch).
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Properties of the grid

To prove convergence rates for d = 2 we need the following properties of
the grid

Every K is a geodesicly convex, curved polygon.

For i 6= j the section Ki ∩ Kj is empty, a point or a common face.

Each face is a segment of a geodesic line.

There are constants α, h > 0, such that

αh2 ≤ |K |, (1)

δ(K ) ≤ h, (2)

where δ(K ) denotes the diameter of K .
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