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Interface coupling: main features

Given two codes

• two (compressible) fluid codes simulating fluid flow of the
same ‘nature’, taking into account different specificities
not coupled phenomena (monophysics)

• fixed interface (multidomain)

• ‘thin’ interface, the codes interact
exchange of information at the interface (strong coupling)

• need of a robust procedure
understand the physics at the interface (‘intelligent’ coupling)

• use existing codes
few modifications in each domain

→ give a numerical coupling procedure to ‘couple’ the codes.
First: examples; then: what is the mathematical model?



Examples

• ‘Real’ examples of coupling codes in thermohydraulics
• homogeneous models: HRM-HEM (taking into account

porosity or assuming thermodynamic equilibrium)
• 1D - 2D, 1D - 3D models (taking into account symmetry or

keeping multidimensional effects)
• bifluid - drift flux models
• other example: two plasma models with different current

densities (neglected in some part)

• Some mathematical models of coupling
• (scalar) conservation laws
• linear systems (of the same dimension)
• relaxation (2x2) system / relaxed (scalar) conservation law
• Euler systems in Lagrangian coordinates
• ” ” systems: barotropic (2x2)/ with energy (3x3)
• linearly degenerate systems (relaxing to Euler)



Mathematical model

• Two hyperbolic systems of conservation laws (possibly
nonconservative)

∂u

∂t
+

∂

∂x
fα(u) = 0, α = L, x < 0,R, x > 0, t > 0 (1)

•

‘compatibility’ between systems (or not)

1. plasma models: same equations, only one flux component is
discontinuous

2. models 1D-2D: 2D system reduces to the 1D system
3. p−system coupled with Euler (in Lagrangian coord.) are

compatible
4. multiphase models: 7 equations (2 velocities) and drift - flux?

•

two boundary value problems, one on each side of the
interface x = 0 (thin interface, no ‘interface model’)
coupling model through the ‘choice’ of boundary conditions
(which physical variables can/should be transmitted?)
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model

x>0

x=0interface

u  (x)0u  (x)0 x
0

u(0!,t)

system with flux system with flux

t

f fL R

IBVP in IBVP in x<0
u(0+,t)



Example of the plasma model

u = (ρ, ρv , ρs, ρse)
T

fL(u) = (ρv , ρv2 + P, ρsv , ρsev − βse)
T

fR(u) = (ρv , ρv2 + P, ρsv , ρsev)T

P = p + pe = (ρs)γ + (ρse)
γ (γ = 5/3)

only the 4th equation (entropy conservation of electrons) changes
at interface

∂

∂t
(ρse) +

∂

∂x
(ρseve) = 0

with

ve = v − β

ρ
, x < 0, ve = v , x > 0

eigenvalues λ = v , ve , v ± c , may change sign: many possible cases
to order the λk,L, λk,R (and nonlinear effects)



Comments

Why a thin interface ? why this mathematical model ?
several levels of answer

• codes should not be modified: only the (boundary) data

• need to understand what a ‘natural’ scheme computes

• in case of non uniqueness, instability linked to resonance is
avoided (ex. plasma)

• if one ‘regularizes’, for large time, behaves like a coupled
problem (CRP)

• thickening requires more physics

Link with equations with discontinuous coefficients



Tools for theoretical & numerical analysis

1. Riemann problems: Cauchy problem for fα with initial data

u(x , 0) =

{
u`, x < 0
ur , x > 0

(2)

self-similar solution WR( x
t ;u`,ur ) for fR , WL(

x
t ;u`,ur ) for fL.

Riemann problems (RP) are used to
• express the Coupling Condition (CC): state coupling
• exhibit some explicit solutions: Wc(

x
t ;u`,ur ) solution of a

coupled Riemann problem (CRP) (1) (2)
• test numerical schemes
• building block in a numerical scheme (Godunov)

2.

Relaxation: ∂tU + ∂xF(U) = S(U)/ε
• as example of compatible models: coupling a relaxation system

and the relaxed system (ε → 0)
• in a numerical procedure: coupling of larger LD systems

(‘relaxing’ to the L,R systems) leads to flux coupling

3.

Regularization
• numerical coupling (FV method): provides numerical viscosity
• Dafermos regularization of (1)(2): particular vanishing viscosity
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Coupling Condition

• Given b, IBVP in x > 0, one cannot impose u(0+, t) = b
→ weak formulation of the boundary condition:
u(0+, t) ∈ OR(b) means u(0+, t) = WR(0+;b,u) for some
u ∈ Rp

WR(0+;ul ,ur ) solution of the Riemann problem with fR
OR(b) = traces at x = 0 of all possible RP between b and a
right state

• define the sets OL,R(u(0±, t))

• coupling condition:

(CC) u(0−, t) ∈ OL(u(0+, t)), u(0+, t) ∈ OR(u(0−, t))



Coupling Condition: example

Two Euler systems in Lagrangian coordinates
u = (τ, v , e), fα(u) = (−v , p, pv), p = pα(τ, ε), λ2 = 0 eigenvalue

d

uu+

00

u(0−,t) (L)

u

−
(R) u(0+,t)

u(0−,t)u(0+,t)

3−      R

t t

 R1−     1−     L

u g

0

3 −    L

x x

Coupling condition CC
u(0−, t) ∈ OL(u(0+, t)) (left), u(0+, t) ∈ OR(u(0−, t))(right)
u(0−) = WL(0−;u−,u(0+)), u(0+) = WR(0+;u(0−),u+)



same Euler systems: coupled Riemann problem (CRP) = Cauchy
problem for (1) with Riemann data uL,uR

t

λ = 0
3,Rσ

1σ ,L

0
x

Ru u

u(0−) u(0+)

L

2

Example: solution of a CRP with two shocks 1− L and 3− R, one
stationary wave u(0−), u(0+)
(easy because λ1,L(u) < 0 < λ3,R(u), no change of sign)



heuristic

0

1
L

! 1
R

! 3
R

! 3
L

t

x

!

λL,1 < 0 < λL,3, λR,1 < 0 < λR,3 λL,2 = λR,2 = 0 characteristic
case
heuristic: transmission of 2 quantities (justified by a linearized
analysis)
coupled RP (CRP): only 1L− waves, 0−wave and 3R−waves



State coupling / Flux coupling

∂tu + ∂x fα(u) = 0, α = L, x < 0,R, x > 0, t > 0 (1)

• State coupling
• when x = 0 is non characteristic the coupling condition CC

‘often’ yields continuity u(0+, t) = u(0−, t)

conservative variables are transmitted, NOT the flux
• when x = 0 is characteristic not all, only part of the
conservative variables can be transmitted

• 6= Flux coupling = conservative approach, (1) written with H
Heaviside

∂tu + ∂x((1− H(x))fL(u) + H(x)fR(u)) = 0, x ∈ R

yields fL(u(0−, t)) = fR(u(0+, t)) the flux is transmitted



Comments

1. A natural link exists between flux coupling and equations with
discontinuous coefficients
A conservative form (given by physics) involves some natural
entropy condition

2. Even for ‘identical’ systems (fL = fR), the conservative
formulation is a choice for transmission: one decides to
‘transmit’ the flux. In some cases, it is not physical (ex.
nozzles with discontinuous but constant section, the rate of
flow is not conserved)
→ we choose to study all possibilities: state and flux coupling

3. One can model the transmission of other variables



Transmission of other variables

• change of variables : u ∈ Ω → v ∈ Ωv (conservative/primitive)

• v → u = ϕα(v);α = L,R admissible i.e. ϕ′
α(v) isomorphism

of Rp

• c given by physics (pressure), bL = ϕL(c), bR = ϕR(c), set
OL(bL) = {w = WL(0−;u−,bL);u− ∈ Ω}
OR(bR) = {w = WR(0+;bR ,u+);u+ ∈ Ω}
sets of admissible boundary values for L,R

• transmission of variables v obtained by

u(0−, t) ∈ OL(ϕL(v(0+, t)))

u(0+, t) ∈ OR(ϕR(v(0−, t)))

(note that ϕL(v(0+, t)) 6= u(0+, t) = ϕR(v(0+, t)))

It yields ‘continuity’ of (or part of) v : v(0−, t) = v(0+, t)



Example: p−system

Barotropic Euler system in Lagrangian coordinates u = (τ, v)T ,
f(u) = (−v , p)T ,λ1 = −C < 0 < λ2 = +C (C =

√
−p′(τ))

two systems with p = pα(τ), α = L,R
interface x = 0, non characteristic separates the 1− and 2−waves
CC by transmission of v = (v , p) yields continuity of v = (v , p)

)

)!   (    v(0+,t)

x

t

0 x

t

0x

t

0

u

1!   wave 2!    wave
1!     waveL L
R

! (        v(0+,t)L

! (        L v(0!,t)

=u(0!,t)

R!   (          v(0!,t)

=u(0+,t)
2!     waveR

ul r

)

)

R

left RP : v(0−) → v(0+) right RP : v(0−) → v(0+))
2L−wave by a 1R− wave



τ, v , p in transmission of u = (τ, v) left vs v = (v , p) right
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Example: transmission of v , p for Euler system

Again two Euler systems in Lagrangian coordinates with gamma
law: u = (τ, v , e), fα(u) = (−v , p, pv), p = (γα − 1)ε/τ

r

uu+

x0 x0

(L)

x0

u u

−
(R)

3−      R3 −    L

t t

 R1−     1−     L
v(0−,t) v(0+,t)

v(0+,t) v(0−,t)g

CC in primitive variable v = (τ, v , p) yields

p(0−, t) = p(0+, t), v(0−, t) = v(0+, t)

intersection of two wave curves in (v , p)−plane:
v(0+) ∈ C̃3

L(v(0−)) ∩ C̃1
R(v(0−)) = {v(0−)}

CC in conservative variable u = (τ, v , e) yields

ε/τ(0−, t) = ε/τ(0+, t), v(0−, t) = v(0+, t)



τ, v , p for Euler with CC v = (τ, v , p) Left, vs u = (τ, v , e) Right
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Comments

Nonuniqueness of CC; different CC give different solutions
→ need of a physical criteria for choosing the transmitted variables
(besides conservation of mass), conservation of some stationary
solutions (material wave)?
Some difficulties linked to the present approach:

• non conservative systems

• singular source terms

• possible resonance: the eigenvalues may change sign (ex.
Euler system in Eulerian coordinates) at x = 0

• non uniqueness of the solution

A natural answer: add viscosity

• Dafermos regularization (does not bring uniqueness)

• numerical (uniqueness, but which solution is computed?)



Regularization

State coupling = non-conservative approach

∂tu + ∂x f (u, a) = M, x ∈ R, t > 0, ∂ta = 0,

f (u, a) = afL(u) + (1− a)fR(u), M measure (Dirac), weight jump

[f (u, a)] = fR(u(0+, t))− fL(u(0−, t))

Riemann data for a: aL = 1, aR = 0 and ∂ta = 0
⇒ a(x) is a Heaviside function, ∂xa = −δ0,{

∂tu + ∂x

(
afL(u) + (1− a)fR(u)

)
+

(
fR(u)− fL(u)

)
∂xa = 0

∂ta = 0

If u continuous, (fR(u)− fL(u))∂xa (non conservative product) is
well defined. Write the 1st equation

∂tu + (afL
′(u) + (1− a)fR

′(u))∂xu = 0

System with eigenvalues 0 and λ(u, a) = afL
′(u) + (1− a)fR

′(u).
Extends to v -coupling



Dafermos regularization (scalar case)

Non conservative system{
∂tu + λ(u, a)∂xu = 0
∂ta = 0

add a regularization term{
∂tuε + λ(uε, aε))∂xuε = tε∂xxuε

∂taε = tε2∂xxaε

initial data uε(x , 0) = u0(x), aε(x , 0) = a0(x)

u0(x) =

{
uL, x < 0
uR , x > 0

a0(x) =

{
1, x < 0
0, x > 0.

Regularization with t in the RHS was proposed by Dafermos.
It corresponds to a classical viscous regularization in variable
ξ = x/t,T = ln t and allows to study the approximation of
self-similar solutions.



Dafermos regularization: profile at the interface

Look for self similar solutions: ξ = x/t, uε(ξ), aε(ξ)
uε, aε exist, ∃u, ‘uεk

→ u’ as ε → 0,
• u solution of the CRP, entropy solution in x < 0, x > 0
• at interface possible boundary layer → zoom: fast variable
y = ξ/ε Uε(y) = uε(εy), Aε(y) = aε(εy).

• Aε(y) converges to A(y) = (1− erf(y/
√

2))/2,
A(−∞) = 1,A(+∞) = 0, non trivial profile connecting 1 to 0
thanks to ε2 (if ε, A(y) = 1/2)

• possible non trivial profiles for U . If fα strictly convex:

-left: U(−∞) = u(0−) or U(−∞) < u(0−)
f ′L(U(−∞)) < 0 < f ′L(u(0−))

-right: U(+∞) = u(0+) or U(+∞) > u(0+)
f ′R(U(+∞)) > 0 > f ′R(u(0+))

Structure of the discontinuity u(0−), u(0+): u(0−),U(−∞) L-
stationary shock, U(−∞),U(+∞), U(+∞), u(0+) R- stationary
shock. Rules out some unstable solutions, possible nonuniqueness



Example, quadratic case

solution of the CRP, in the plane (uL, uR)

fL(u) = u2/2, fR(u) = (u − c)2/2, c > 0



Numerical coupling by a two-flux FV method

Finite volume method: ∆x , ∆t, µ = ∆t
∆x , tn = n ∆t, n ∈ N

cell (xj , xj+1), center xj+1/2 =
(
j + 1

2

)
∆x , j ∈ Z,

u0
j+1/2 = 1

∆x

∫ xj+1

xj
u0(x)dx , j ∈ Z

two numerical fluxes gL, gR , gα consistent with fα
3-point monotone scheme (under CFL condition):

gn
α,j = gα

(
un

j−1/2,u
n
j+1/2

)
• un+1

j−1/2 = un
j−1/2 − µ

(
gn

L,j − gn
L,j−1

)
, j ≤ 0

• un+1
j+1/2 = un

j+1/2 − µ
(
gn

R,j+1 − gn
R,j

)
, j ≥ 0

• x0 = 0 is a boundary between two cells: two fluxes for j = 0

gn
α,0 = gα

(
un
−1/2,u

n
+1/2

)
, α = L,R



Numerical coupling

two numerical fluxes at x = 0,

• gn
α,0 = gα

(
un
−1/2,u

n
+1/2

)
, α = L,R ensures u-state coupling

x=0

 ,0
g

R ,0
g

x
!1

x
1

x
!2

x
2

!1/2u

t

x

u1/2

L

• gn
L,0 = gL(u

n
−1/2, ϕL(v

n
+1/2)), gn

0,R = gR(ϕR(vn
−1/2),u

n
+1/2)

ensures v-state coupling



Numerical coupling: what is computed ?

If* the two-flux FV scheme converges (u∆ → u) in some ‘sensible
way’, (*proven in the scalar case, with rather general assumptions)
then u is solution of the coupled problem with our CC.
In case of

• uniqueness, u is the unique solution

• non-uniqueness, u is a solution, which solution?



which solution is computed?

scalar quadratic case: fL(u) = u2/2, fR(u) = (u − c)2/2, c < 0:
possible solutions obtained by Dafermos regularization

double shock missing in central area



which solution is computed?

scalar quadratic case: fL(u) = u2/2, fR(u) = (u + 4)2/2

CRP with uL = −0.5, uR = −2.5, f ′L(uL) < 0, f ′R(uR) > 0

exact solution: 2 shocks computed with Godunov’s scheme and
Lax-Friedrichs modified: um

G = −1, 21, um
LF = −1, 12



which solution is computed?

fL(u) = u2/2, fR(u) = (u + 3)2/2, CRP with uL = 3, uR = −6

computed solution: a R−shock with Godunov’s scheme,
L−shock + stationary discontinuity + R−shock with mod. L.-F.



which solution is computed?

fL(u) = u2/2, fR(u) = (u + 3)2/2, same CRP with uL = 3, uR = −6

data such that f ′L(uL) > 0, f ′L(uR) < 0, f ′R(uL) > 0, f ′R(uR) < 0,

u(0−)

L L
f’ (u   )
R R

u
R

u
L

u
L

f’ (u   )
R Rf’ (u  )

L L

u
R

u
R

u
L

f’ (u  )
LR

f’ (u  )
L R

x

tt

x

 

u(0−) u(0+)
u(0+)

f’ (u  )

mod. LF computes a compound discontinuity with boundary layer:
L−shock uL → u(0−), discontinuity u(0−) → u(0+), R−shock
u(0+) → uR



Numerical coupling: example of the plasma model

u = (ρ, ρv , ρs, ρse)
T , fL(u) = (ρv , ρv2 + P, ρsv , ρsev − βse)

T

fR(u) = (ρv , ρv2 + P, ρsv , ρsev)T , P = p + pe = (ρs)γ + (ρse)
γ

(γ = 5/3) differ only by the la 4th equation with
ve = v − β

ρ , x < 0, ve = v , x > 0
We study the case
ve(0−) < (v − c)(0−) < 0 < v(0−) < (v + c)(0−) and
(v − c)(0+) < 0 < ve(0+) = v(0+) < (v + c)(0+)

• continuity of u at x = 0

• nonuniqueness of the solution of the CRP

• parametrize the solutions by se electron entropy of state u(0)

• numerical results: for a coupled CRP, the computed solution
depends little on the scheme

• differs from the solution computed after regularization of the
initial data



which solution is computed?

CRP, initial data: ρL = ρR , u, p discontinuous, β = 5

left: computed CRP, se(0) = 1, 725se,R (fitted value) and exact
solution computed with this value
right: regularization of u, p by spline, one determines
se(0) = 2, 88se,R (fitted), and exact solution computed with this
value



Numerical flux coupling for Euler

For Euler, u = (%, %u, %e), flux (%u, %u2 + p, (%e + p)u), the
eigenvalues may change sign, the flux is not an admissible change
of variables.
Numerical flux coupling via a global relaxation coupling solver

• a larger relaxation system relaxing towards Euler as ε → 0

• a numerical coupling of the convective part of the relaxation
systems with judicious choice of CC

• a splitting method: convection + instantaneous relaxation
ε = 0

Results in a standard finite volume method: if it ‘converges’ to u,
u is solution of a coupled problem with continuous flux, and
entropy solution in x < 0 and x > 0



Relaxation system for Euler

Euler (barotropic case): u = (%, %u), flux f(u) = (%u, %u2 + p)
Relaxation system (Suliciu):

∂t% + ∂x(%u) = 0
∂t(%u) + ∂x(%u2 + Π) = 0
∂t(%T ) + ∂x(%T u) = λ%(τ − T )

with Πα = Π̃(τ, T ) ≡ p̃α(T ) + a2(T − τ), τ = 1/%, p̃(τ) = p(%).
Formally T → τ , Π → p as λ →∞.
3 LD fields, RP are easily computed → Godunov’s scheme:
j 6= 0 (left and right) gn

α,j = fα(Wα(0;un
j−1/2,u

n
j+1/2))

j = 0, solve a CRP with transmission of v = (τ, u,Π) then
gn

α,0 = fα(Wc(0; vn
−1/2, v

n
+1/2)), gn

L,0 = gn
R,0

→ results in a conservative consistent scheme for Euler, entropy
scheme in x < 0, x > 0



Example of a (numerical) flux coupling: a CRP for Euler
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data %L = 1.902, uL = 1.6361, pL = 2.4598; %R = 1, uR = 2, pR = 1
(computation by Thomas Galié)
exact solution: 1L−shock, stationary (coupling) wave, 1R− sonic
rarefaction, 2R−CD and 3R−shock



Developments: theoretical results

1. Scalar case
• Existence theorem in some generic situations (and uniqueness

in some cases)
• convergence of the two-flux scheme (monotone, E-scheme)
• Coupled Riemann problem
• coupling of the 2x2 relaxation system with the relaxed

equation with F. Caetano
• Dafermos regularization with Benjamin Boutin

2. The case of systems

• coupling of linear systems
• multiple choice of transmitted variables
• coupling of Lagrange-type systems (characteristic interface)
• coupling Euler system (3x3) and p-system (2x2)
• coupling two Euler systems (Eulerian coordinates)

• coupled Riemann problem (state coupling, not easy)
• relaxation model: explicit solution of CRP for a relaxation

system with LD fields; flux coupling



developments: applications, numerical study

1. Plasma model: same model (same pde), one neglects the
current density. Case of non uniqueness

2. Coupling two Euler systems: same model, different closure
laws

• choice of transmitted variables
• example u, p for a material wave
• choice of scheme (relaxation, Lagrange+projection)
• examples of coupled Riemann problem

3. Coupling multi-phase models: HRM-HEM, two different but
consistent models, 4 equations / 3 equations
HEM is obtained from HRM through relaxation
(thermodynamical equilibrium)

4. Work in progress: 4 equations (mixture model with drift) / 7
equations (bifluid model) compatibility is not obvious



further developments, perspective

• coupling bifluid and drift flux models:
• asymptotic expansion of a bifluid model (→ drift flux model)
• asymptotic preserving schemes (cf. N. Seguin)
• relaxation approximation of a bifluid (→ a drift flux) model

(cf. A. Ambroso)

• control of the transmission procedure, optimization

• relaxation for fluid models

• stability of solutions, linearized stability in 2d

• more convergence results (relaxation, approximation)

• thickened interface



Conclusion

• This work was necessary: it gives in many cases
• a theoretical model for interface coupling
• a better understanding of what can be transmitted
• a robust coupling scheme

and useful tools (even for other approaches)

• Some questions left

• It is not the ultimate approach
• thickened interface

• Related topics of interest are
• interface coupling with small scale phenomena
• coupling more complex fluid systems (multiphysics)


