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Interface coupling: main features

Given two codes

e two (compressible) fluid codes simulating fluid flow of the
same ‘nature’, taking into account different specificities
not coupled phenomena (monophysics)

e fixed interface (multidomain)

e ‘thin’ interface, the codes interact
exchange of information at the interface (strong coupling)
e need of a robust procedure
understand the physics at the interface (“intelligent’ coupling)

e use existing codes
few modifications in each domain

— give a numerical coupling procedure to ‘couple’ the codes.
First: examples; then: what is the mathematical model?



Examples

e ‘Real’ examples of coupling codes in thermohydraulics

e homogeneous models: HRM-HEM (taking into account
porosity or assuming thermodynamic equilibrium)

e 1D - 2D, 1D - 3D models (taking into account symmetry or
keeping multidimensional effects)

o bifluid - drift flux models

e other example: two plasma models with different current
densities (neglected in some part)

e Some mathematical models of coupling

e (scalar) conservation laws

e linear systems (of the same dimension)

e relaxation (2x2) system / relaxed (scalar) conservation law
e Euler systems in Lagrangian coordinates

e " " systems: barotropic (2x2)/ with energy (3x3)

e linearly degenerate systems (relaxing to Euler)



Mathematical model

e Two hyperbolic systems of conservation laws (possibly
nonconservative)

Ou 0
EJr&f“(")*O’ a=Lx<0,R x>0 t>0 (1)



Mathematical model

e Two hyperbolic systems of conservation laws (possibly
nonconservative)

Ju 0
E“‘afa(u):oyCV:LsX<07R7X>0,t>0 (1)
e ‘compatibility’ between systems (or not)

1. plasma models: same equations, only one flux component is
discontinuous

2. models 1D-2D: 2D system reduces to the 1D system

3. p—system coupled with Euler (in Lagrangian coord.) are
compatible

4. multiphase models: 7 equations (2 velocities) and drift - flux?



Mathematical model

e Two hyperbolic systems of conservation laws (possibly
nonconservative)

Ju 0
E“‘afa(u):oyCV:L=X<07R7X>0,t>0 (1)
e ‘compatibility’ between systems (or not)

1. plasma models: same equations, only one flux component is
discontinuous

2. models 1D-2D: 2D system reduces to the 1D system

3. p—system coupled with Euler (in Lagrangian coord.) are
compatible

4. multiphase models: 7 equations (2 velocities) and drift - flux?

e two boundary value problems, one on each side of the
interface x = 0 (thin interface, no ‘interface model’)
coupling model through the ‘choice’ of boundary conditions
(which physical variables can/should be transmitted?)



model

t
u(0-,t) | u(0+,t)
IBVP in x<0 -t IBVP in x>0
system with flux system with flux
f, fr
u, (x) u, (x)
0

interface x=0



Ezample of the plasma model

u=(p,pv,ps, pse)”

fL(u) = (pv, pv? + P, psv, psev — (3s.) "
fr(u) = (pv, pv2 + P, psv, psev) T

P =p+pe=(ps)" + (pse)” (v =5/3)

only the 4th equation (entropy conservation of electrons) changes

at interface

0 0
S (pse) 5 (pseve) =0
with

g

Ve=V——, x<0, Ve=v, x>0

eigenvalues A = v, v, v & ¢, may change sign: many possible cases
to order the A/, Ak r (and nonlinear effects)



Comments

Why a thin interface ? why this mathematical model ?
several levels of answer

e codes should not be modified: only the (boundary) data
e need to understand what a ‘natural’ scheme computes

e in case of non uniqueness, instability linked to resonance is
avoided (ex. plasma)

e if one ‘regularizes’, for large time, behaves like a coupled
problem (CRP)

e thickening requires more physics

Link with equations with discontinuous coefficients



Tools for theoretical & numerical analysis

1. Riemann problems: Cauchy problem for f, with initial data

u(x,0) = { (2)

self-similar solution Wg(%;ur, u,) for fr, W, (%;ur,u,) for f;.
Riemann problems (RP) are used to
e express the Coupling Condition (CC): state coupling
e exhibit some explicit solutions: Wc(f; uy, u,) solution of a
coupled Riemann problem (CRP) (1) (2)
e test numerical schemes
e building block in a numerical scheme (Godunov)

uy, x <0
u, x>0
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Tools for theoretical & numerical analysis

Riemann problems: Cauchy problem for f, with initial data

u(x,0) = { (2)

self-similar solution Wg(%;ur, u,) for fr, W, (%;ur,u,) for f;.
Riemann problems (RP) are used to
e express the Coupling Condition (CC): state coupling
e exhibit some explicit solutions: Wc(ﬁ; uy, u,) solution of a
coupled Riemann problem (CRP) (1) (2)
e test numerical schemes
e building block in a numerical scheme (Godunov)
Relaxation: 9;U + 0xF(U) = S(U)/e
e as example of compatible models: coupling a relaxation system
and the relaxed system (¢ — 0)
e in a numerical procedure: coupling of larger LD systems
(‘relaxing’ to the L, R systems) leads to flux coupling
Regularization
e numerical coupling (FV method): provides numerical viscosity
o Dafermos regularization of (1)(2): particular vanishing viscosity

uy, x <0
u, x>0



Coupling Condition

e Given b, IBVP in x > 0, one cannot impose u(0+,t) = b
— weak formulation of the boundary condition:
u(0+, t) € Og(b) means u(0+, t) = Wg(0+; b, u) for some
ucRP
Wr(0+; uy, u,) solution of the Riemann problem with fr
Or(b) = traces at x = 0 of all possible RP between b and a
right state

e define the sets O r(u(0+, t))

e coupling condition:

(CO) [u(0—, 1) € O (u(0+,1)), u(0+,1) € Or(u(0-, 1))]




Coupling Condition: example

Two Euler systems in Lagrangian coordinates
u=(7,v,e),fo(u) =(—v,p,pv), p= pa(7,€), A2 = 0 eigenvalue

t

R uP 34 - u® Tuery 44

\
9 ‘ u(0+,t) u(0-,1) Uy
« ‘

Coupling condition CC
u(0—,t) € O, (u(0+,t)) (left), u(0+, t) € Or(u(0—, t))(right)
u(0—) =W, (0—;u_,u(0+)), u(0+)=Wg(0+;u(0—),u;)



same Euler systems: coupled Riemann problem (CRP) = Cauchy
problem for (1) with Riemann data u,ug

Example: solution of a CRP with two shocks 1 — [ and 3 — R, one
stationary wave u(0—), u(0+)
(easy because Aq;(u) < 0 < A3 g(u), no change of sign)



heuristic

)\L,l <0< /\L73, )\R,l <0< )\R,3 /\L,2 = )\R,2 = 0 characteristic
case

heuristic: transmission of 2 quantities (justified by a linearized
analysis)

coupled RP (CRP): only 1/— waves, 0—wave and 3R—waves



State coupling / Flux coupling

otu+ O fo(u) =0, a =L, x<0,R,x>0,t>0 (1)
e State coupling
e when x = 0 is non characteristic the coupling condition CC
‘often’ yields continuity ’ u(0+,t) = u(0—, t)‘
conservative variables are transmitted, NOT the flux
e when x = 0 is characteristic not all, only part of the
conservative variables can be transmitted

e # Flux coupling = conservative approach, (1) written with H
Heaviside

Dot + O (1 — H(x))fL(u) + H(x)fr(u)) = 0,x € R

yields ’ fL(u(0—,t)) = fr(u(0+,t)) ‘ the flux is transmitted




Comments

1. A natural link exists between flux coupling and equations with
discontinuous coefficients
A conservative form (given by physics) involves some natural
entropy condition

2. Even for ‘identical’ systems (f; = fg), the conservative
formulation is a choice for transmission: one decides to
‘transmit’ the flux. In some cases, it is not physical (ex.
nozzles with discontinuous but constant section, the rate of
flow is not conserved)

— we choose to study all possibilities: state and flux coupling

3. One can model the transmission of other variables



Transmission of other variables

change of variables : u € Q — v € Q, (conservative/primitive)
vV — u = @,(v);a =L, R admissible i.e. ¢/ (v) isomorphism
of RP

c given by physics (pressure), b, = ¢/(c), bg = ¢r(c), set
OL(bL) = {W = WL(O—; u_, bL); u_ < Q}

OR(bR) = {W = WR(O—H br, U_|_); up € Q}

sets of admissible boundary values for L, R

transmission of variables v obtained by

U(O—, t) € OL(‘PL(V(O_F? t)))
u(0+,t) € Or(er(v(0—,t)))

(note that ¢, (v(0+, t)) # u(0+, t) = pr(v(0+,t)))
It yields ‘continuity’ of (or part of) v : ’v(O—, t) = v(0+, t)‘




Ezxample: p—system

Barotropic Euler system in Lagrangian coordinates u = (7, v)7,

flu)=(—v,p) . \1=-C<0<Xa=+C (C=+/-p'(1))

two systems with p = p,(7), a = L, R

interface x = 0, non characteristic separates the 1— and 2—waves
CC by transmission of v = (v, p) yields continuity of v = (v, p)

14 wave (PL( v(0-,t)) 2L wave 1-R wave (PR(((;'(OJJ)) 2-R wave
=u(0+,
=u(0-,0)
i @,(v(0+1)) @ (¥(0-0) Ur
0 X 0 x
left RP : v(0—) — v(0+) right RP : v(0—) — v(0+))

2/ —wave by a 1R— wave



7, v, p in transmission of u = (7, v) left vs v = (v, p) right
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Ezxample: transmission of v, p for Euler system

Again two Euler systems in Lagrangian coordinates with gamma
law: u = (7, v, e),f,(u) = (—v,p,pv), p= (Yo — 1)e/T

t

v(o-t) u 34 u® Tvory 54

1+ 1R

9 ‘ V(0+,1) v(0-, Uy
0 X 0

CC in primitive variable v = (7, v, p) yields
p(0—, ) = p(0+, ), v(0—, t) = v(0+,1)]
intersection of two wave curves in (v, p)—plane:
v(0+) € C}(v(0-)) N C(v(0-)) = {v(0-)}
CC in conservative variable u = (7, v, e) yields
e/7(0—,t) = £/7(0+, 1), v(0—, t) = v(0+,1)]




7, v, p for Euler with CC v = (7, v, p) Left, vs u = (7, v, e) Right
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Comments

Nonuniqueness of CC; different CC give different solutions

— need of a physical criteria for choosing the transmitted variables
(besides conservation of mass), conservation of some stationary
solutions (material wave)?

Some difficulties linked to the present approach:

e non conservative systems
e singular source terms

e possible resonance: the eigenvalues may change sign (ex.
Euler system in Eulerian coordinates) at x =0

e non uniqueness of the solution
A natural answer: add viscosity
¢ Dafermos regularization (does not bring uniqueness)

e numerical (uniqueness, but which solution is computed?)



Regularization

State coupling = non-conservative approach

Oru + Oxf(u,a) =M, xeR, t>0, 0:a=0,
f(u,a) = af (u) + (1 — a)fr(u), M measure (Dirac), weight jump
[F (4, 3)] = F(u(0+, £)) — Fi(u(0—, £))
Riemann data for a: a, =1,ar =0and 0;a=20
= a(x) is a Heaviside function, 0ya = —do,
{ Oru + O (afi (u) + (1 = @) () + (fr(u) — fi(u) ) B2 = 0
Ora=0

If u continuous, (fr(u) — fi(u))0xa (non conservative product) is
well defined. Write the 1st equation

Oru + (af'(u) + (1 — a)fr'(u))Oxu =0

System with eigenvalues 0 and \(u, a) = af;/(u) + (1 — a)fz'(u).
Extends to v-coupling



Dafermos reqularization (scalar case)
Non conservative system

Oru+ ANu,a)0xu=0
3ta =0

add a regularization term

Orue + Nug, a:))OxUe = te0xx e
Ora. = te20yas

initial data u-(x,0) = up(x), a-(x,0) = ap(x)

ug, x <0 1, x<0
”O(X):{ urs x>0 aO(X):{ 0, x > 0.

Regularization with ¢ in the RHS was proposed by Dafermos.
It corresponds to a classical viscous regularization in variable
& =x/t, T =Int and allows to study the approximation of
self-similar solutions.



Dafermos regularization: profile at the interface

Look for self similar solutions: £ = x/t, u-(£), a-(&)
ug, a. exist, du, ‘u;, — u" ase — 0,
e u solution of the CRP, entropy solution in x < 0, x >0
e at interface possible boundary layer — zoom: fast variable
y = 5/5 Z/[s(y) = U5(6y), AE(Y) = as(ey)'
o A.(y) converges to A(y) = (1 — erf(y/v2))/2,
A(—o00) =1, A(+00) = 0, non trivial profile connecting 1 to 0
thanks to €2 (if ¢, A(y) = 1/2)
e possible non trivial profiles for U. If f, strictly convex:
-left: U(—o0) = u(0—) or U(—o0) < u(0-)
fl(U(—o0)) <0 < f(u(0-))
-right: U(400) = u(0+) or U(+00) > u(0+)
fo(U(+00)) > 0 > fi(u(0+))
Structure of the discontinuity u(0—), u(0+): u(0—),U(—0o0) L-
stationary shock, U/(—o00),U(+00), U(+0o0), u(0+) R- stationary
shock. Rules out some unstable solutions, possible nonuniqueness



Ezxample, quadratic case

solution of the CRP, in the plane (ug, ug)




Numerical coupling by a two-flur F'V method

Finite volume method: Ax, At, u= R=, tp,=nAt, neN
cell (xj,xj+1), center xj 1o = (+ )AX, JE€Z,

0 _ 1 rx
= fojﬁl ug(x)dx, j€Z

two numerical fluxes g;, gr, 8. consistent with f,
3-point monotone scheme (under CFL condition):

8. = & <” ~1/2) J+1/2>
+1 .
o u” 12 =Yl — M <g’ZJ - gZJ—l) , J<0
+1 .
° Jn+1/2 J"'+1/2 —H (g%,jﬁ-l - gﬁ,j) , J =0
e xp = 0 is a boundary between two cells: two fluxes for j =0

g(r,'\z,O = 8a <U21/2, ug—l/Q) , O = L, R



Numerical coupling

two numerical fluxes at x = 0,
°glo=28n <u21/2, uil/z) ,a = L, R ensures u-state coupling

* g?,o = gL(UZ1/2a QOL(V?H/Q))v gS,R = gR(@R(Vzl/g)a u11/2)
ensures v-state coupling



Numerical coupling: what is computed ?

If* the two-flux FV scheme converges (ua — u) in some ‘sensible
way', (*proven in the scalar case, with rather general assumptions)

then u is solution of the coupled problem with our CC.
In case of

® uniqueness, u is the unique solution

® non-uniqueness, u is a solution, which solution?



which solution is computed?

scalar quadratic case: f,(u) = u?/2, fr(u) = (u — c)?/2,c < O:
possible solutions obtained by Dafermos regularization

double shock missing in central area



which solution is computed?

scalar quadratic case: f;(u) = u?/2, fp(u) = (u + 4)?/2
CRP with uy = —0.5,ur = —2.5, fL/(UL) <0, fé(uR) >0

-0.25

-0.50 3

~1.00 - meod. Lax- Friedrichs

-1.25 3
-1.50 3
-1.75
-2.00
-2.25
-2.50 ]

-2.75 T T T T T T T T T
-1.e -0.8 -0.6 -90.4 -0.2 9.9 0.2 0.4 9.6 9.8

exact solution: 2 shocks computed with Godunov’'s scheme and
Lax-Friedrichs modified: uf = —1,21, uf = —1,12



fi(u) = u?/2, fr(u) =

tr

which solution is computed?

(u+3)?/2, CRP with uy =3,up = —6

mod. Lax -Friedrichs

55
25
15
05

a5\

5]

traces for mod. Lax -Friedrichs

approx. sol.

computed solution: a R—shock with Godunov's scheme,
L—shock + stationary discontinuity + R—shock with mod.

L.-F.



which solution is computed?

fi(u) = u?/2, fp(u) = (u+3)?/2, same CRP with u; =3, up = —6
data such that f/(u;) > 0, f/(ug) < 0, fi(ur) > 0, f(ur) <O,

At At
uo-] uo+) ‘ u(0-) U(0‘+)
filug fu)
) '"U'g) f,u) YA )
X
> . >
u L u R u L R

mod. LF computes a compound discontinuity with boundary layer:
L—shock u; — u(0—), discontinuity u(0—) — u(0+), R—shock
u(0+) — ur



Numerical coupling: example of the plasma model

u=(p,pv,ps,pse)’, L (u) = (pv, pv® + P, psv, psev — (s.) T
fr(u) = (pv,pv? + P, psv, psev)T, P =p+ pe = (ps)" + (pse)’
(v = 5/3) differ only by the la 4th equation with
Ve =V —1, x <0, ve=v, x>0
We study the case
Ve(0—) < (v —¢)(0—) <0< v(0—) < (v+¢)(0—) and
(v—2c)(04) <0 < ve(0+) = v(0+) < (v + ¢)(0+)

e continuity of u at x =0

e nonuniqueness of the solution of the CRP

e parametrize the solutions by s. electron entropy of state u(0)

e numerical results: for a coupled CRP, the computed solution
depends little on the scheme

e differs from the solution computed after regularization of the
initial data



which solution is computed?

CRP, initial data: p; = pgr, u, p discontinuous, § =5

Solution of the Riemann problem Solution of the regularized problem, e=0.001
Do P01, Pey 008, 1,22, =S 1.9yl 001, Pez009, 2. B=5

left: computed CRP, s.(0) = 1,725s, g (fitted value) and exact
solution computed with this value

right: regularization of u, p by spline, one determines

se(0) = 2,88s, g (fitted), and exact solution computed with this
value



Numerical flux coupling for Euler

For Euler, u = (o, ou, ge), flux (ou, ou? + p, (0e + p)u), the
eigenvalues may change sign, the flux is not an admissible change
of variables.
Numerical flux coupling via a global relaxation coupling solver

e a larger relaxation system relaxing towards Euler as ¢ — 0

e a numerical coupling of the convective part of the relaxation
systems with judicious choice of CC
e a splitting method: convection + instantaneous relaxation
e=0
Results in a standard finite volume method: if it ‘converges’ to u,
u is solution of a coupled problem with continuous flux, and
entropy solution in x < 0 and x > 0



Relazxation system for Euler

Euler (barotropic case): u = (o, ou), flux f(u) = (ou, ou? + p)
Relaxation system (Suliciu):

atQ + 8X(QU) =0
O:(ou) + Ox(ou? + 1) =0
0t(07) + Ox(07 u) = Xo(T — 7))

with My = (7, 7) = pa(T) + a%(7 —7), 7 =1/ 0, p(7) = p(0).
Formally 7 — 7, [l = p as A — oc.

3 LD fields, RP are easily computed — Godunov's scheme:

Jj # 0 (left and right) g7 ; = fo.(Wo(0;u_; » 0l 5))

J =0, solve a CRP with transmission of v = (7, u, [1) then

g(nx;,o = f.(W(0; VZ1/2a Vil/z))v gi’,o = grll?,O

— results in a conservative consistent scheme for Euler, entropy
scheme in x < 0,x >0



Example of a (numerical) flux coupling: a CRP for Euler

Density
35

Tso0cels +
analytical ——

data o, =1.902,u; = 1.6361,p;, =2.4598;0r =1, ur =2,pr =1
(computation by Thomas Gali€)

exact solution: 1L—shock, stationary (coupling) wave, 1R— sonic
rarefaction, 2R—CD and 3R—shock



Developments: theoretical results

1. Scalar case

o Existence theorem in some generic situations (and uniqueness
in some cases)

e convergence of the two-flux scheme (monotone, E-scheme)

e Coupled Riemann problem

e coupling of the 2x2 relaxation system with the relaxed
equation with F. Caetano

e Dafermos regularization with Benjamin Boutin

2. The case of systems

coupling of linear systems

multiple choice of transmitted variables

coupling of Lagrange-type systems (characteristic interface)
coupling Euler system (3x3) and p-system (2x2)

coupling two Euler systems (Eulerian coordinates)

e coupled Riemann problem (state coupling, not easy)
o relaxation model: explicit solution of CRP for a relaxation
system with LD fields; flux coupling



developments: applications, numerical study

. Plasma model: same model (same pde), one neglects the

current density. Case of non uniqueness

Coupling two Euler systems: same model, different closure
laws

choice of transmitted variables

example u, p for a material wave

choice of scheme (relaxation, Lagrange+projection)
examples of coupled Riemann problem

Coupling multi-phase models: HRM-HEM, two different but
consistent models, 4 equations / 3 equations

HEM is obtained from HRM through relaxation
(thermodynamical equilibrium)

. Work in progress: 4 equations (mixture model with drift) / 7

equations (bifluid model) compatibility is not obvious



further developments, perspective

coupling bifluid and drift flux models:

e asymptotic expansion of a bifluid model (— drift flux model)

e asymptotic preserving schemes (cf. N. Seguin)

e relaxation approximation of a bifluid (— a drift flux) model
(cf. A. Ambroso)

control of the transmission procedure, optimization
relaxation for fluid models

stability of solutions, linearized stability in 2d

more convergence results (relaxation, approximation)

thickened interface



Conclusion

This work was necessary: it gives in many cases

e a theoretical model for interface coupling
e a better understanding of what can be transmitted
e a robust coupling scheme

and useful tools (even for other approaches)

Some questions left

It is not the ultimate approach
e thickened interface

Related topics of interest are

e interface coupling with small scale phenomena
e coupling more complex fluid systems (multiphysics)



