	Bench of anisotropic problems
	NUMERICAL EXPERIMENTS WITH THE DDFV METHOD
L	F. Hermeline
	CEA, centre DAM-Ile de France, DSSI, Bruyères-le-Châtel, 91297 Arpajon Cedex, France.

Description of the scheme

We present the numerical results we have obtained with the finite volume method introduced in^a for approximating diffusion operators with variable (continuous or discontinuous, linear or non-linear), full tensor coefficients on *arbitrary* meshes. \ln^b this type of method has been called Discrete-Duality Finite Volume (DDFV), in order to emphasize that it satisfies a discrete integration by parts.

The main idea lies in using two different meshes, namely an arbitrary (given) *primal* mesh and a *dual* mesh that is made up from the primal mesh. Here we have chosen the *median* dual mesh whose vertices are the centers of gravity of the primal cells and the middle of the primal sides. The diffusion equation to be dealt with is integrated both on the cells of the primal mesh and on those of the dual mesh while the degrees of freedom are the values of the unknown function at the centers of gravity of the primal cells, the middle of the boundary sides and the vertices of the primal mesh. The method provides symmetric positive definite matrices. Moreover, it provides natural, accurate, a *posteriori* approximations of both the gradient and the Hessian of the solution. The approximated gradient is calculated at the middle of the cell sides while the approximated Hessian is calculated both at the centers of gravity and vertices of the primal cells. ^aF. Hermeline, C.R. Acad. Sci. Paris, Ser. 1 326, p 1433-1436, 1998, J. Comp. Phys., Vol. 160, p 481-499, 2000, Comp. Methods Appl. Mech. Engrg, Vol. 192, p 1939-1959, 2003. ^bS. Delcourte, K. Domelevo, P. Omnes, *Finite Volumes for Complex Applications* (4), F. Benkhaldoun, D. Ouazar and S. Raghay Eds, Hermes, p 447-458, 2005.

Results for Test 2 Numerical locking

Results for Test 1.1

min = 0.0, max = 1.0.

• Triangular mesh mesh1 ocvl2 = 2.00, ocvgradl2 = 2.00.

i	nı	ınkw	nı	nmat	\mathbf{S}	umflux	е	rl2	ergra	ad	ratio	2	ratio	grad	
1		109		864	-1	L.79e-10	2.1	3e-2	2.336	-2					
2		385	3	3252	-1	l.89e-11	5.7	7e-3	5.92ϵ	÷-3	2.07	,	2.	17	
3	1	441	1	2564	2	.60e-11	1.4	7e-3	1.48ϵ	-3	2.07	,	2.	09	
4	Ц.)	5569	4	9332	7	7.57 e- 11	3.6	8e-4	3.72ϵ	-4	2.04		2.	05	
5	2	1889	19	95444	9	.47e-11	9.2	1e-5	9.32ϵ	-5	2.02		2.	02	
6	8	6785	77	77972	6	.36e-11	2.3	0e-5	2.33ϵ	-5	2.01		2.	01	
7	34	5601	31	04244	-3	3.93e-11	5.7	6e-6	5.82ϵ	-6	2.01		2.	00	
	i	erflx()	erflx1		erfly0	er	fly1	erfl	n	umin		umaz	ĸ	
	1	1.06e-	2	1.06e-2	2	1.06e-2	1.0)6e-2	1.37e) -1	0.0	0).991()1	
	2	2.65e-	3	2.65e-3	3	2.65e-3	2.6	56-3	3.83e	e-2	0.0	C).9978	35	
	3	6.63e-	4	6.63e-4	4	6.63 e- 4	6.6	3e-4	9.996) -3	0.0	C).999 4	16	
	4	1.65e-	4	$1.65e_{-4}$	4	1.65e-4	1.6	55e-4	2.54e) -3	0.0	C).9998	36	
	5	4.14e-	5	4.14e-	5	4.14e-5	4.1	4e-5	6.42e	-4	0.0	C).9999	97	
	6	1.03e-	5	1.03e-	5	1.03e-5	1.0	3e-5	1.62e	-4	0.0	C).9999	99	
	-		-		-					_		-			

min = 0.0, max = 1 + sin(1).

• Triangular mesh mesh1 ocvl2 = 2.00, ocvgradl2 = 1.92.

	i	nunkw	nnmat	sumflux	erl2	ergrad	ratiol2	ratiograd	l
	1	109	864	-2.20e-10	2.65e-3	7.93e-3			
	2	385	3252	-8.63e-10	6.55e-4	2.22e-3	2.21	2.01	
	3	1441	12564	-6.95e-10	1.65e-4	6.11e-4	2.09	1.95	
	4	5569	49332	-8.17e-9	4.14e-5	1.66e-4	2.04	1.93	
	5	21889	195444	-9.93e-9	1.04e-5	4.44e-5	2.02	1.92	
	6	86785	777972	3.09e-8	2.59e-6	1.18e-5	2.01	1.92	
	7	345601	3104244	3.76e-8	6.47e-7	3.12e-6	2.00	1.92	
	1			0.0		2			
	_	i erflx() erflx1	erfly0	erfly1	erflm	umin	umax	
		1 4.08e-	3 4.86e-	3 5.36e-3	1.60e-2	4.83e-2	0.0	1.84147	
		2 1.20e-	3 1.32e-	3 2.03e-3	5.13e-3	2.47e-2	0.0	1.84147	
		3 3.51e-	4 3.37e-	4 6.69e-4	1.57e-3	1.30e-2	0.0	1.84147	
		4 1.08e-	4 8.48e-	5 2.11e-4	4.74e-4	6.75e-3	0.0	1.84147	
		5 2.82e-	5 2.14e-	5 6.35e-5	1.37e-4	3.44e-3	0.0	1.84147	
		6 7.79e-	6 5.33e-	6 1.85e-5	3.87e-5	1.73e-3	0.0	1.84147	
		7 2.07e-	6 1.34e-	6 5.42e-6	1.09e-5	8.73e-4	0.0	1.84147	
• Locally refined	m	lesh i	nesh	3 ocv	l2=	1.99,	oc	vgra	dl2 = 1.52.
• Locally refined	m. I i	esh 1	nesh:	3 ocv	12 = 12	1.99, ergrad	OC ratiol2	vgra ratiograd	dl2 = 1.52.
• Locally refined	m i	esh 1	nnmat	3 ocv	12 = 12	1.99,	OC ratiol2	vgra ratiograd	dl2 = 1.52.
• Locally refined	$ \begin{array}{c} $	esh 1 ^{nunkw}	nesh nnmat 929	3 OCV sumflux -1.67e-10	12 = erl2 7.83e-3	1.99, ergrad 2.57e-2	OC ratiol2	vgra ratiograd	dl2 = 1.52. ∣
• Locally refined	$ \begin{array}{c} i\\ 1\\ 1\\ 2 \end{array} $	nunkw 121 401	nesh: nnmat 929 3304	3 OCV sumflux -1.67e-10 -8.58e-10	erl2 7.83e-3 1.94e-3	1.99, ergrad 2.57e-2 8.96e-3	OC ratiol2 2.33	vgra ratiograd 1.76	dl2 = 1.52. ∣
• Locally refined	$ \begin{array}{c} i\\ 1\\ 1\\ 2\\ 3 \end{array} $	nunkw 121 401 1441	nnmat 929 3304 12376	3 OCV sumflux -1.67e-10 -8.58e-10 3.86e-10	erl2 7.83e-3 1.94e-3 4.84e-4	1.99, ergrad 2.57e-2 8.96e-3 3.10e-3	OC ratiol2 2.33 2.16	vgra ratiograd 1.76 1.66	dl2 = 1.52.
• Locally refined	$ \begin{array}{c} i\\ 1\\ 1\\ 2\\ 3\\ 4 \end{array} $	nunkw 121 401 1441 5441	nnmat 929 3304 12376 47800	3 OCV sumflux -1.67e-10 -8.58e-10 3.86e-10 8.43e-9	erl2 7.83e-3 1.94e-3 4.84e-4 1.21e-4	1.99, ergrad 2.57e-2 8.96e-3 3.10e-3 1.08e-3	OC ratiol2 2.33 2.16 2.08	vgra ratiograd 1.76 1.66 1.59	dl2 = 1.52.
• Locally refined	$ \begin{array}{c} i \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	nunkw 121 401 1441 5441 21121	nnmat 929 3304 12376 47800 187768	3 OCV sumflux -1.67e-10 -8.58e-10 3.86e-10 8.43e-9 9.12e-9	erl2 7.83e-3 1.94e-3 4.84e-4 1.21e-4 3.04e-5	1.99, ergrad 2.57e-2 8.96e-3 3.10e-3 1.08e-3 3.77e-4	OC ratiol2 2.33 2.16 2.08 2.04	1.76 1.66 1.59 1.55	dl2 = 1.52.
• Locally refined	$ \begin{array}{c} i \\ i \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	nunkw 121 401 1441 5441 21121	nnmat 929 3304 12376 47800 187768	3 OCV sumflux -1.67e-10 -8.58e-10 3.86e-10 8.43e-9 9.12e-9	erl2 7.83e-3 1.94e-3 4.84e-4 1.21e-4 3.04e-5	1.99, ergrad 2.57e-2 8.96e-3 3.10e-3 1.08e-3 3.77e-4	OC ratiol2 2.33 2.16 2.08 2.04	ratiograd 1.76 1.66 1.59 1.55	dl2 = 1.52.
• Locally refined	$\stackrel{i}{1}$ 1 2 3 4 5	esh 1 nunkw 121 401 1441 5441 21121 i erflx(nnmat 929 3304 12376 47800 187768	3 OCV sumflux -1.67e-10 -8.58e-10 3.86e-10 8.43e-9 9.12e-9 erfly0	erl2 7.83e-3 1.94e-3 4.84e-4 1.21e-4 3.04e-5 erfly1	1.99, ergrad 2.57e-2 8.96e-3 3.10e-3 1.08e-3 3.77e-4 erflm	OC ratiol2 2.33 2.16 2.08 2.04 umin	1.76 1.66 1.59 1.55 umax	dl2 = 1.52.
• Locally refined	i 1 1 2 3 4 5	i erflxt	nnmat 929 3304 12376 47800 187768) erflx1 3 1.26e-4	3 OCV sumflux -1.67e-10 -8.58e-10 3.86e-10 8.43e-9 9.12e-9 erfly0 3 9.86e-4	erl2 7.83e-3 1.94e-3 4.84e-4 1.21e-4 3.04e-5 erfly1 1.44e-2	1.99, ergrad 2.57e-2 8.96e-3 3.10e-3 1.08e-3 3.77e-4 erflm 1.27e-1	OC ratiol2 2.33 2.16 2.08 2.04 umin 0.0	vgra ratiograd 1.76 1.66 1.59 1.55 umax 1.84147	dl2 = 1.52.
• Locally refined	$ \begin{array}{c} $	iesh 1 nunkw 121 401 1441 5441 21121 i erflx(1 7.58e- 2 1.23e-	nnmat 929 3304 12376 47800 187768) erflx1 3 1.26e-3 3 1.01e-4	3 OCV sumflux -1.67e-10 -8.58e-10 3.86e-10 8.43e-9 9.12e-9 erfly0 3 9.86e-4 4 9.57e-5	erl2 7.83e-3 1.94e-3 4.84e-4 1.21e-4 3.04e-5 erfly1 1.44e-2 6.70e-3	1.99, ergrad 2.57e-2 8.96e-3 3.10e-3 1.08e-3 3.77e-4 erflm 1.27e-1 6.90e-2	OC ratiol2 2.33 2.16 2.08 2.04 umin 0.0 0.0	vgra ratiograd 1.76 1.66 1.59 1.55 umax 1.84147 1.84147	dl2 = 1.52.
• Locally refined	i 1 1 2 3 4 5	i erflx(1 7.58e- 2 1.23e- 3 1.30e-	nnmat 929 3304 12376 47800 187768) erffx1 3 1.26e-3 3 1.01e-4 4 1.41e-4	3 OCV sumflux -1.67e-10 -8.58e-10 3.86e-10 8.43e-9 9.12e-9 erfly0 3 9.86e-4 4 9.57e-5 5 4.51e-5	erl2 7.83e-3 1.94e-3 4.84e-4 1.21e-4 3.04e-5 erfly1 1.44e-2 6.70e-3 2.50e-3	1.99, ergrad 2.57e-2 8.96e-3 3.10e-3 1.08e-3 3.77e-4 erflm 1.27e-1 6.90e-2 3.59e-2	OC ratiol2 2.33 2.16 2.08 2.04 umin 0.0 0.0 0.0 0.0	ratiograd 1.76 1.66 1.59 1.55 umax 1.84147 1.84147 1.84147	dl2 = 1.52.
• Locally refined	1 1 2 3 4 5	iesh 1 nunkw 121 401 1441 5441 21121 i erflx(1 7.58e- 2 1.23e- 3 1.30e- 4 1.29e-	nnmat 929 3304 12376 47800 187768) erflx1 3 1.26e- 3 1.01e- 4 1.41e- 5 3.30e-	3 OCV sumflux -1.67e-10 -8.58e-10 3.86e-10 8.43e-9 9.12e-9 9.12e-9 erfly0 3 9.86e-4 4 9.57e-5 5 4.51e-5 6 2.07e-5	erl2 7.83e-3 1.94e-3 4.84e-4 1.21e-4 3.04e-5 erfly1 1.44e-2 6.70e-3 2.50e-3 8.34e-4	1.99, ergrad 2.57e-2 8.96e-3 3.10e-3 1.08e-3 3.77e-4 erflm 1.27e-1 6.90e-2 3.59e-2 1.84e-2	OC ratiol2 2.33 2.16 2.08 2.04 umin 0.0 0.0 0.0 0.0 0.0	ratiograd 1.76 1.66 1.59 1.55 umax 1.84147	dl2 = 1.52.

• Distorted quadrangular mesh mesh4_j_i 2.00, $\mathbf{ocvl2} =$ ocvgradl2 = 1.99.

i	nu	ınkw	nn	mat	su	mflux		erl2	eı	rgrad	ra	tiol2	ra	tiogra	ad
1	6	581	5'	707	-5.	85e-11	2.	04e-2	1.	95e-2					
2	2	517	21	820	-2.	73e-11	5.	16e-3	5.	08e-3	2	2.10		2.06	
3	5	509	48	340	3.9	90e-11	2.	29e-3	2.	27e-3	2	2.07		2.05	
4	9	657	85	264	1.8	89e-12	1.	29e-3	1.	28e-3	2	2.05		2.04	
5	14	4961	132	2592	-3.	38e-12	8.	25e-4	8.	21e-4	2	2.04		2.03	
6	21	1421	190	0324	1.3	31e-11	5.	73e-4	5.	71e-4	2	2.03		2.02	
	i	erflx	0	erflz	κ1	erfly0		erfly1		erflm	1	umin	u	max	
	1	1.53e) -3	1.100	e-2	3.87e-3	3	6.90e-3	3	1.47e-1	L	0.0	1	.026	
	2	3.01ϵ	-4	2.860	e-3	9.34e-4	1	1.61e-3	3	6.28e-2	2	0.0	1	.005	
	3	1.36e	-4	1.276	e-3	4.13e-4	1	7.18e-4	1	3.77e-2	2	0.0	1.	.002	
	4	7.77ϵ	è-5	7.196	e-4	2.32e-4	1	4.06e-4	1	2.50e-2	2	0.0	1	.001	
	5	5.02ϵ	è-5	4.600	e-4	1.48e-4	1	2.61e-4	1	1.77e-2	2	0.0	1	.001	
	6	3.50ϵ	÷-5	3.20e	e-4	1.03e-4	1	1.81e-4	1	1.32e-2	2	0.0	1	.000	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											

• Comments

The method is second-order accurate in the L_2 -norm for the solution and its gradient and first-order accurate in the L_2 -norm for its Hessian.

Results for Test 3: Oblique flow

Triangular mesh mesh1. umin = -1, umax = 1.• $\delta = 10^5$.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	• Solution on mesh2_i for $i=2$ (left), $i=3$ (center), $i=4$ (right)	• Solutio mesh5
• $\delta = 10^{\circ}$. $\frac{1}{1} \frac{100}{100} \frac{864}{467e+1} \frac{1}{9.24e-1} \frac{1}{9.24e-1} \frac{1}{9.20e-1} \frac{1}{2.3} \frac{-0.02}{-0.02}$ $\frac{1}{2} \frac{1}{385} \frac{3525}{352} - 1.17e+1} \frac{7.99e-1}{7.99e-1} \frac{1}{9.18e-1} \frac{0.18}{0.39} \frac{0.02}{-0.02}$ $\frac{1}{3} \frac{1441}{1569} \frac{12564}{-3.32e+1} \frac{-3.02e-1}{7.66e-1} \frac{1}{7.13e-1} \frac{0.18}{0.18} \frac{0.39}{0.62}$ $\frac{1}{5} \frac{5}{21889} \frac{195444}{140e-0} \frac{1460e-1}{456e-1} \frac{3.07e-1}{0.28} \frac{0.28}{0.59}$ $\frac{1}{7} \frac{1}{345601} \frac{1002444}{3102444} \frac{7.72e-1}{7.2e-1} \frac{2.64e-1}{2.64e-1} \frac{7.60e-2}{0.52} \frac{0.52}{1.52}$ $\frac{1}{1} \frac{erfkx}{1} \frac{erfkx}{419e-3} \frac{fky0}{429e+1} \frac{fky0}{1.8e+2} \frac{fky0}{1.20e+0} \frac{40.33}{0.38} \frac{0.71}{0.71}$ $\frac{1}{2} \frac{1}{9.54e-4} \frac{1}{1.06e-3} \frac{3.258e-1}{-3.25e+1} \frac{-1.06e+2}{-1.06e+2} \frac{1.47e-0}{-0.21} \frac{0.91}{0.91}$ $\frac{1}{3} \frac{1.09e+4}{1.86e-4} \frac{1.57e+0}{9.75e-1} \frac{-2.27e+1}{-2.27e+1} \frac{1.77e+0}{1.77e+0} \frac{0.25}{0.67} \frac{0.67}{0.68}$ $\frac{1}{6} \frac{2.63e-6}{3.98e-6} \frac{1.16e+0}{-1.56e+0} \frac{-5.76e+0}{-5.8e-1} \frac{1.06e+1}{-0.08} \frac{1.64e-1}{0.07} \frac{0.97}{0.97}$ $\frac{1}{7} \frac{7.33e-8}{1.72e-7} \frac{1.20e+0}{-8.00e-2} \frac{7.83e+1}{7.83e+1} \frac{1.04e+1}{-0.78} \frac{1.11}{1.11}$ Formments The conjugate gradient method does not converge (no attempt has been made to optimize the preconditioner).	Image: A start of the start	• Come In this
Results for Test 5 : Heterogeneous rotating anisotropye. Rectangular mesh mesh5.umin= 0.0, umax= 1.0. $ocvl2= 2.00$, $ocvgradl2= 1.95$. $\frac{1}{1}$ $\frac{1}{57}$ $\frac{1}{1}$ $\frac{1}{57}$ $\frac{1}{1}$ $\frac{1}{57}$ $\frac{1}{3}$ $\frac{609}{5083}$ $\frac{1}{2}$ $\frac{1}{202}$ $\frac{1}{3}$ $\frac{609}{5083}$ $\frac{1}{202}$ $\frac{1}{202}$ $\frac{1}{3}$ $\frac{1}{202}$ $\frac{1}{3}$ $\frac{1}{202}$ $\frac{1}{3}$ $\frac{1}{202}$ $\frac{1}{3}$ $\frac{1}{202}$ $\frac{1}{3}$ $\frac{1}{202}$ $\frac{1}{2}$ $\frac{1}{202}$ <td>Results for Test 6 and Test 7 • Test 6 Oblique drain, min = -1.2, max = 0, coarse (C) and fine (F) oblique meshes, mesh6 and mesh7 $\frac{1}{514} \frac{4237}{4777} \frac{9.32e-14}{3.32e-14} \frac{1}{7.31e-16} \frac{1}{1.22e-14} \frac{1}{154e-14}$ $\frac{1}{574e-1777} \frac{1}{3.97e-13} \frac{1}{1.12e-15} \frac{1}{1.54e-14}$</td> <td>• Test 1.0.</td>	Results for Test 6 and Test 7 • Test 6 Oblique drain, min = -1.2, max = 0, coarse (C) and fine (F) oblique meshes, mesh6 and mesh7 $\frac{1}{514} \frac{4237}{4777} \frac{9.32e-14}{3.32e-14} \frac{1}{7.31e-16} \frac{1}{1.22e-14} \frac{1}{154e-14}$ $\frac{1}{574e-1777} \frac{1}{3.97e-13} \frac{1}{1.12e-15} \frac{1}{1.54e-14}$	• Test 1.0.

m	iesh i	nesh	.2. u	$\mathtt{min}=$	= 0.0,	umax	= 1	.0.
i	nunkw	nnmat	sumflux	umin	umax	1		
1	57	403	4.99e-16	-4.72e-3	1.00472	1		
2	177	1387	2.38e-10	-5.63e-2	1.05634	1		
3	609	5083	2.41e-10	-1.52e-2	1.01528	1		
4	2241	19387	1.95e-10	-1.82e-2	1.01824	1		
5	8577	75643	2.76e-10	-1.07e-3	1.00106	1		
	i i 1 2 3 4 5	meshi i nunkw 1 57 2 177 3 609 4 2241 5 8577	inunkwnnmat157403217713873609508342241193875857775643	inunkwnnmatsumflux1574034.99e-16217713872.38e-10360950832.41e-1042241193871.95e-1058577756432.76e-10	meshmesh2.umin=inunkwnnmatsumfluxumin1574034.99e-16-4.72e-3217713872.38e-10-5.63e-2360950832.41e-10-1.52e-242241193871.95e-10-1.82e-258577756432.76e-10-1.07e-3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

$\frac{1}{100} \frac{1}{345001} \frac{1}{3104244} \frac{1}{-0.50e-7} \frac{1}{1.19e-4} \frac{1}{3.14e-4} \frac{1}{9.44} \frac{1}{0.84} \frac{1}{0.84}$	• Solution on mesh2_i for $i=2$ (left), $i=3$ (center), $i=4$ (right)	mesh5
• $0 = 10^{\circ}$. $\frac{i \text{ nunkw nnmat sumflux erl2 ergrad ratiol2 ratiograd}}{1 109 864 4.67e+1 9.24e-1 9.20e-1}$ 2 385 3252 -1.17e+1 7.99e-1 9.41e-1 0.23 -0.02 3 1441 12564 -3.32e+1 7.06e-1 7.13e-1 0.18 0.39 4 5569 49332 -6.21e-1 5.52e-1 4.61e-1 0.36 0.62 5 21889 195444 1.40e+0 4.56e-1 3.07e-1 0.28 0.59 6 86785 777972 3.31e-1 3.79e-1 2.18e-1 0.27 0.49 7 345601 3104244 7.72e-1 2.64e-1 7.60e-2 0.52 1.52 $\frac{i \text{ erflx0 erflx1 fly0 fly1 erflm umin umax}}{1 9.74e-3 4.19e-3 4.23e+1 1.18e+2 1.20e+0 -0.33 0.71}$ 2 9.54e-4 1.06e-3 -3.58e-1 -1.06e+2 1.47e+0 -0.21 0.91 3 1.09e-4 1.86e-4 9.75e-1 -2.27e+1 1.77e+0 -0.35 0.67 4 6.59e-9 4.61e-4 5.72e+1 2.19e+0 8.18e-1 -0.60 0.87 5 4.87e-6 7.01e-6 -1.36e+0 -6.76e+0 8.13e-1 -0.74 0.86 6 2.63e-6 3.98e-6 1.15e+0 -1.25e+0 5.36e-1 -0.70 0.97 7 7.33e-8 1.72e-7 -8.00e-2 7.83e-1 1.64e-1 -0.78 1.11	 Output of the set of	• Com In this
• Comments The conjugate gradient method does not converge (no attempt has been made to optimize the preconditioner).		
Results for Test 5 : Heterogeneous rotating anisotropy	Results for Test 6 and Test 7	
• Rectangular mesh mesh5. umin= 0.0, umax= 1.0. ocvl2= 2.00, ocvgradl2= 1.95. $\frac{i \text{ nunkw nnmat sumflux erl2 ergrad ratiol2 ratiograd}}{1 57 403 3.21e-10 4.83e-2 5.86e-2}$ $\frac{i 1 57 403 3.21e-10 4.83e-2 5.86e-2}{2 177 1387 3.65e-11 1.11e-2 1.83e-2 2.59 2.05}$	• Test 6 Oblique drain, min = -1.2 , max = 0, coarse (C) and fine (F) oblique meshes, mesh6 and mesh7 $\frac{\frac{1}{14} \frac{1}{4237} \frac{9.32e-14}{9.32e-14} \frac{7.31e-16}{1.22e-14}}{\frac{574}{4777} \frac{3.97e-13}{3.97e-13} \frac{1.12e-15}{1.54e-14}}$ $\frac{\frac{1}{2.98e-16} \frac{1}{1.53e-14} \frac{1}{4.02e-15} \frac{1}{5.82e-15} \frac{6.88e-14}{6.88e-14} \frac{1}{-1.20} \frac{1}{0}}{6.86e-15}$	• Test 1.0.

• Comments

The method is second-order accurate in the L_2 -norm for the solution, second-order (1.5-order) accurate in the L_2 -norm for its gradient and first-order (0.5-order) accurate in the L_2 -norm for its Hessian, for *triangle* meshes (*non-conforming* rectangle meshes).

Results for Test 4 : Vertical fault

• Non conforming rectangular mesh mesh5. umin=0.0, umax=1.0.

i	nunkw	nnmat	sumflux	umin	umax
1	282	2278	7.60e-9	0.0	1.0
ref	52161	465595	3.15e-8	0.0	1.0

i	flux0	flux1	fluy0	fluy1
1	-4.00e+1	$4.18e{+1}$	-1.81e+0	9.08e-4
ref	-4.20e+1	$4.43e{+1}$	-2.35e+0	7.97e- 4

ion for the vertical fault on the meshes: (Left)mesh5 (Right) 5_ref.

• Test 7 Oblique barrier, min = -5.575, max = 0.575, coarse

ments case the method satisfies the discrete maximum principle.

Results for Test 8 and Test 9

8 Perturbed parallelograms mesh mesh8, umin=0.0, umax=

nunkw	nnmat	$\operatorname{sumflux}$	umin	umax
309	2503	-1.32e-10	-1.61e-3	8.99e-2

flux0flux1fluy0fluy12.45e-10-1.83e-104.80e-15.11e-1

• Test 9 Anisotropy with wells. Square uniform grid mesh9. umin= $0.0, \, \text{umax} = 1.0,$

5 5)2(301	4733947	-3.62e-13	2.58e-6	6.47e-6	2.00	1.90
2	10	3297	18905083	-3.74e-13	6.44e-7	1.67e-6	2.00	1.96
i		erflx() erflx1	erfly0	erfly1	erflm	umin	umax
1	_	1.25e-	1 4.48e-2	1.25e-1	4.48e-2	4.73e-1	0.0	1.01089
2	2	4.07e-	2 1.04e-2	4.07e-2	1.04e-2	2.37e-1	0.0	1.00473
3	3	1.24e-	2 2.56e-3	1.24e-2	2.56e-3	1.19e-1	0.0	1.00158
4	Ł	3.67e-	3 6.35e-4	3.67 e-3	6.35e-4	5.95e-2	0.0	1.00045
5	5	1.06e-	3 1.58e-4	1.06e-3	1.58e-4	2.97e-2	0.0	1.00012
6	3	2.98e-	4 3.90e-5	2.98e-4	3.95e-5	1.49e-2	0.0	1.00003
7	7	8.33e-	5 9.40e-6	8.33e-5	9.88e-6	7.43e-3	0.0	1.00000
8	3	2.30e-	5 2.02e-6	2.30e-5	2.50e-6	3.71e-3	0.0	1.00000
G)	6.30e-	6 1.75e-7	6.30e-6	6.55e-7	1.36e-3	0.0	1.00000

298747 1.56e-13 4.12e-5

1187323 3.37e-14 1.03e-5 2.50e-5

33537

132609

1.98

1.97

1.96

9.64e-5 2.03 2.50e-5 2.02

• Comments

The method is second-order accurate in the L_2 -norm for the solution and its gradient and first-order accurate in the L_2 -norm for its Hessian. Similar results have been obtained for the anisotropic ratio: $\epsilon = 10^{-12}.$

oblique mesh mesh6 $\overline{\text{nunkw nnmat sumflux erl2 ergrad}}_{514 4237 2.89e-14 8.00e-16}_{574 4777 5.05e-14 1.46e-15}$ $\overline{\text{erflx0 erflx1 erfly0 erfly1 erflm umin umax}}_{6.28e-14 6.24e-14 2.55e-15 4.13e-14 1.03e-14 -5.575 0.575}$	$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
Comments The method is exact.	
	• Comments The method does not satisfy the discrete maximum principle.