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We propose a DDFV (Discrete Duality Finite Volume) scheme
for the nonlinear elliptic equation

{

−div (ϕ(z,∇ue(z))) = f (z), in Ω,

ue = 0, sur ∂Ω,
(1)

where Ω is a polygonal open set of R
2 and the operator u 7→

−div(ϕ(·,∇u)) is monotonic and coercive (of Leray-Lions type). We are
particularly interested in the case where ϕ is discontinuous with respect
to the variable z (transmission problems).

The scheme is constructed in a way to ensure the consistency of the
numerical fluxes where ϕ is discontinous.

We obtain error estimates for sufficiently piecewise smooth solutions of
the same order than in the case of regular fluxes. Numerical results
confirm the gain obtained with these new scheme.

1. Assumptions

• Let p ∈]1,∞[, p′ = p
p−1 and f ∈ Lp′(Ω). Assume here p ≥ 2 to simplify.

• ϕ : Ω × R
2 → R

2 is a Caratheodory function such that ξ, η ∈ R
2:

(ϕ(z, ξ), ξ) ≥ Cϕ (|ξ|p − 1) , (H1)

|ϕ(z, ξ)| ≤ Cϕ

(

|ξ|p−1 + 1
)

. (H2)

(ϕ(z, ξ) − ϕ(z, η), ξ − η) ≥
1

Cϕ
|ξ − η|p. (H3)

|ϕ(z, ξ) − ϕ(z, η)| ≤ Cϕ

(

1 + |ξ|p−2 + |η|p−2
)

|ξ − η|. (H4)

• Remark : More general cases can be studied. For instance if ϕ is nonlinear

on Ω1 and linear on Ω2 = Ω \ Ω1 (See [3]).

2. Back to the DDFV schemes

See [4], for the Laplace operator.

See [1] and [2] for the nonlinear case.

•The DDFV meshes primal, dual and “diamond”.
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•Zoom on the diamond cells

Diamond cells are supposed to be convex. Let us note Q the quarters of
this cell.
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•The discrete unkhowns

uT =
(

uM, uM
∗
)

where uM = (uK)K∈M uM
∗

= (uK∗)K∗∈M
∗

•The discrete gradient : ∇T uT constant on each diamond cell D

∇T
Du

T =
1

sin αD

(

uL − uK

|σ∗|
ν +

uL∗ − uK∗

|σ|
ν
∗
)

, ∀D. (2)

•The DDFV scheme

−
∑

Dσ,σ∗∩K 6=∅

|σ|
(

ϕD(∇T
Du

T ),ν
)

=

∫

K

f (z) dz, ∀K ∈ M

−
∑

Dσ,σ∗∩K∗ 6=∅

|σ∗|
(

ϕD(∇T
Du

T ),ν∗)=

∫

K∗
f (z) dz, ∀K∗ ∈ M

∗,

(3)

with

ϕD(ξ) =
1

|D|

∫

D
ϕ(z, ξ) dz.

•Error estimates obtained in [1] :

Assume that ϕ is Lipschitz continuous with respect to z with
∣

∣

∣

∣

∂ϕ

∂z
(z, ξ)

∣

∣

∣

∣

≤ Cϕ

(

1 + |ξ|p−1
)

, ∀ξ ∈ R
2. (H5)

If ue ∈ W 2,p(Ω) we have

‖ue − uM‖Lp + ‖ue − uM∗
‖Lp + ‖∇ue −∇T uT ‖Lp ≤ C size(T )

1
p−1.

3. Discontinuities in the flux ϕ

In this case (H5) is not satisfied since ue 6∈ W 2,p(Ω), as the gradient of ue is
discontinuous. The DDFV still converges (see [1]) but the fluxes are no more
consistent along the interface of discontinuities.

Assumme that on each Q, ϕ is Lip. and satisfies (H5).

AIM : obtain the consistency along the discontinuity!

We construct a new approximation ϕN
D on each diamond cell to obtain the

consistency of the discrete fluxes (see Section 5)

−
∑

Dσ,σ∗∩K 6=∅

|σ|
(

ϕN
D (∇T

Du
T ),ν

)

=

∫

K

f (z) dz, ∀K ∈ M

−
∑

Dσ,σ∗∩K∗ 6=∅

|σ∗|
(

ϕN
D (∇T

Du
T ),ν∗) =

∫

K∗
f (z) dz, ∀K∗ ∈ M

∗
(5)

4. The method in 1D

Let us consider the problem

Ω =] − 1, 1[, ϕ(x, ·) = ϕ−(·), if x < 0, ϕ(x, ·) = ϕ+(·), if x > 0.

Let x0 = −1 < . . . < xN = 0 < . . . < xN+M = 1 be a discretization of [−1, 1].
The FV scheme writes in 1D:

−Fi+1 + Fi =

∫ xi+1

xi

f (x) dx,∀i ∈ {0, N + M − 1}. (6)

with

Fi = ϕ(xi,∇iu
T ), ∇iu

T =
ui+1

2
− ui−1

2

xi+1
2
− xi−1

2

, ∀i 6= N, (7)

QUESTION : How to define FN ?
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h
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To ensure the consistency and the conservativity of the discrete flux at xN = 0,
we look for ũ such that

∇+
NuT =

uN+1
2
− ũ

h+
N

, ∇−
NuT =

ũ − uN−1
2

h−
N

,

and impose that
ϕ−(∇+

NuT ) = ϕ+(∇−
NuT ).

In fact we prefer to look for ũ under the form

ũ = ū + δ, with ū =
h−

NuN+1
2
+ h+

NuN−1
2

h−
N + h+

N

.

that is

∇+
NuT = ∇NuT −

δ

h+
N

, and ∇−
NuT = ∇NuT +

δ

h−
N

. (8)

Proposition.

• For any uT ∈ R
N , there exists a unique δN(∇NuT ) such that

FN

def
= ϕ−

(

∇NuT +
δN(∇NuT )

h−
N

)

= ϕ+

(

∇NuT −
δN(∇NuT )

h+
N

)

, (10)

•The scheme (6), (7), (10) admits a unique solution.

• Example :
Let us consider two fluxes of p-laplacian type

ϕ−(ξ) = k−|ξ + G−|
p−2(ξ + G−), and ϕ+(ξ) = k+|ξ + G+|

p−2(ξ + G+),

where k−, k+ ∈ R
+ and G−, G+ ∈ R

2. We obtain

FN =





k
1

p−1
− k

1
p−1
+ (h−

N + h+
N)

h+
Nk

1
p−1
− + h−

Nk
1

p−1
+





p−1
∣

∣∇NuT + G
∣

∣

p−2 (

∇NuT + G
)

,

where G is the weighted arytmmetic mean value of G− and G+ defined by

G =
h−

NG− + h+
NG+

h−
N + h+

N

.

5. The method in 2D

We define a new gradient on each quarter of diamond cell

∇N
DuT =

∑

Q∈QD

1Q∇
N
QuT , avec ∇N

QuT = ∇T
Du

T + BQδD, δD ∈ R
4,

where δD is a set of 4 artificial unknowns

BQK,K∗ =
1

|QK,K∗|
(|σK|ν

∗, 0, |σK∗|ν, 0) , BQK,L∗
=

1

|QK,L∗|
(−|σK|ν

∗, 0, 0, |σL∗|ν) ,

BQL,L∗
=

1

|QL,L∗|
(0,−|σL|ν

∗, 0,−|σL∗|ν) , BQL,K∗ =
1

|QL,K∗|
(0, |σL|ν

∗,−|σK∗|ν, 0) .

We impose the conservativity of the fluxes to determine δD ∈ R
4.

(

ϕQK,K∗(∇
T
Du

T + BQK,K∗δ
D),ν∗

)

=
(

ϕQK,L∗
(∇T

Du
T + BQK,L∗

δD),ν∗
)

,
(

ϕQL,K∗(∇
T
Du

T + BQL,K∗δ
D),ν∗

)

=
(

ϕQL,L∗
(∇T

Du
T + BQL,L∗

δD),ν∗
)

,
(

ϕQK,K∗(∇
T
Du

T + BQK,K∗δ
D),ν

)

=
(

ϕQL,K∗(∇
T
Du

T + BQL,K∗δ
D),ν

)

,
(

ϕQK,L∗
(∇T

Du
T + BQK,L∗

δD),ν
)

=
(

ϕQL,L∗
(∇T

Du
T + BQL,L∗

δD),ν
)

.

(11)

Proposition. For all uT ∈ R
T and all diamond cell D, there exists a unique

δD(∇T
Du

T ) ∈ R
4 such that (11) is fullfilled or equivalently

∑

Q∈QD

|Q|Bt
QϕQ(∇T

Du
T + BQδD(∇T

Du
T )) = 0.

Let ϕQ be the mean value of ϕ on Q, the numerical flux is then given by:

ϕN
D (∇T

Du
T ) =

1

|D|

∑

Q∈QD

|Q|ϕQ(∇T
Du

T + BQδD(∇T
Du

T )), (12)

• Remark : If ϕ is linear and constant on the control volumes, we
get the scheme proposed by [5] for which the calculations are made explicitly.

Theorem. Assume that ϕ is discontinuous along some curves in Ω and that
ϕ satisfies (H5) on each quarter of diamond. The scheme defined by (5), (12)
admits a unique solution uT . Moreover if ue|Q ∈ W 2,p(Q),∀Q, we have

‖ue − uM‖Lp + ‖ue − uM∗
‖Lp + ‖∇ue −∇NuT ‖Lp ≤ C size(T )

1
(p−1).

• Key point : Obtain the consistency of the new gradient ∇N !

6. Numerical results

The scheme (5) is solved by the following iterative algorithm (r > 0 is given):
• Step 1 : Find (uT ,n, δn

D) solution of

r
∑

Q∈Q

|Q|(∇T
Du

T ,n + BQδn
D − gn−1

Q ,∇T
Dv

T )

=
∑

K

|K|fKvK +
∑

K∗

|K∗|fK∗vK∗ +
∑

Q∈Q

|Q|(λn−1
Q ,∇T

Dv), ∀vT ∈ R
T .

r
∑

Q∈QD

|Q|tBQ(BQδn
D + ∇T

Du
T ,n − gn−1

Q )−
∑

Q∈QD

|Q|tBQλn−1
Q = 0, ∀D ∈ D.

• Step 2 : On each Q, find gn
Q solution of

ϕQ(gn
Q) + λn−1

Q + r(gn
Q −∇T

Du
T ,n − BQδn

D) = 0.

• Step 3 : On each Q calculate λn
Q defined by

λn
Q = λn−1

Q + r(gn
Q −∇T

Du
T ,n − BQδn

D).

Theorem. ∀r > 0, the algorithm converges to the unique solution of (5).

• Results : see http://www.cmi.univ-mrs.fr/~fhubert/Numerique
Ω = [0, 1] × [0, 1], triangular mesh, ue polynomial, p = 3

si z1 < 0.5, ϕ(z, ξ) = |ξ|p−2ξ,

si z1 > 0.5, ϕ(z, ξ) = (Aξ, ξ)
p−2
2 Aξ, avec A =

(

2 0
0 5

)

.

• Comparison DDFV (3) (in blue) and m-DDFV (5) (in black)
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