Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids Overview of the results

> Raphaèle Herbin and Florence Hubert University of Provence, Marseille, France

Finite volumes for complex applications V Aussois, June 2008

- 1 Introduction
- **2** The participating schemes and teams
- Test 1 : mild anisotropy
- Test 2 : numerical locking
- **5** Test 3 : oblique flow
- **6** Test 4 : vertical fault
- **7** Test 5 : heterogeneous rotating anisotropy
- **B** Test 6 : oblique drain
- Test 7 : oblique barrier
- Test 8 : perturbed parallelograms
- **①** Test 9 : anisotropy and wells
- Concluding remarks and perspectives

- **2** The participating schemes and teams
- **3** Test 1 : mild anisotropy
- Test 2 : numerical locking
- **5** Test 3 : oblique flow
- **6** Test 4 : vertical fault
- **7** Test 5 : heterogeneous rotating anisotropy
- **3** Test 6 : oblique drain
- **①** Test 7 : oblique barrier
- Test 8 : perturbed parallelograms
- **①** Test 9 : anisotropy and wells
- Concluding remarks and perspectives

Many thanks to

- ▶ I. Aavatsmark, F. Boyer, R. Eymard, T. Gallouët, C. Le Potier, G. Manzini and R. Masson for their help in the benchmark design.
- ▶ All the participants to the benchmark.

Introduction

Aim : to test existing discretizations for diffusion problems

 $\nabla \cdot (\mathbf{K} \nabla u) = f \text{ on } \Omega,$ $u = \bar{u} \text{ on } \Gamma_D,$ $\mathbf{K} \nabla u \cdot \mathbf{n} = g \text{ on } \Gamma_N,$

with

• Anisotropic
$$\mathbf{K} = \begin{pmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{pmatrix}$$
 and/or heterogeneous medium $\mathbf{K} = k(x)Id$.

▶ Distorted meshes and/or non conformal meshes

Principal properties under study :

- ▶ Rate of convergence.
- Positivity of the schemes : $f \ge 0 \Rightarrow u^{\tau} \ge 0$.
- Maximum principle : if $f = 0, u_e \in [a, b] \Rightarrow u^{\tau} \in [a, b]$.
- \blacktriangleright Approximation of physical quantities such as energy, boundary fluxes, \ldots

Introduction

2 The participating schemes and teams

- **3** Test 1 : mild anisotropy
- Test 2 : numerical locking
- **5** Test 3 : oblique flow
- **6** Test 4 : vertical fault
- **7** Test 5 : heterogeneous rotating anisotropy
- **3** Test 6 : oblique drain
- **①** Test 7 : oblique barrier
- Test 8 : perturbed parallelograms
- **①** Test 9 : anisotropy and wells
- Concluding remarks and perspectives

The participating schemes and teams

Cell centred schemes

- CMPFA, by S. Mundal, D. A. Di Pietro and I. Aavatsmark.
- FVHYB, by L. Agelas and D. A. Di Pietro.
- FVSYM, by C. Le Potier.
- SUSHI-P or SUSHI-NP (full barycentric version), by R. Eymard, T. Gallouët and R. Herbin.

Control volume finite element schemes

• CVFE, by M. Afif and B. Amaziane.

Discontinous Galerkin schemes

- DG-C, by A. Dedner and R. Klöfkorn.
- DG-W, by D. A. Di Pietro and A. Ern.

Discrete duality finite volume schemes

- DDFV-BHU, by F. Boyer and F. Hubert.
- DDFV-HER, by F. Hermeline.
- DDFV-MNI, by I. Moukouop Nguena and A. Njifenjou.
- DDFV-OMN, by P. Omnes.

Finite element schemes

• FEP1, FEP2, FEQ1, FEQ2, by G. Ansanay-Alex, B. Piar and D. Vola.

Lattice Boltzmann schemes

• LATTB, by F. Dubois, P. Lallemand and M. M. Tekitek.

The participating schemes and teams

Mixed or hybrid methods

- MFD-BLS, by K. Lipnikov.
- MFD-FHE, by B. Flemisch and R. Helmig.
- MFD-MAN, by G. Manzini.
- MFD-MAR, by S. Marnach.
- MFE, programmed by the benchmark organizers for lack of a submission.
- MFV, by C. Chainais-Hillairet, J. Droniou and R. Eymard.
- SUSHI-P or SUSHI-NP (full hybrid version), by R. Eymard, T. Gallouët and R. Herbin.

Nonlinear schemes

- FVPMMD, by C. Le Potier.
- NMFV, by D. Svyatskiy.

- 2 The participating schemes and teams **3** Test 1 : mild anisotropy Test 2 : numerical locking **5** Test 3 : oblique flow **G** Test 4 : vertical fault Test 5 : heterogeneous rotating anisotropy Test 6 : oblique drain ① Test 7 : oblique barrier **①** Test 9 : anisotropy and wells
- Concluding remarks and perspectives

Test 1 : mild anisotropy

Test 1.1

 $-\operatorname{div}(\mathbf{K}\nabla u) = f \text{ in } \Omega$ Non homogeneous Dirichlet boundary conditions with $\mathbf{K} = \begin{pmatrix} 1.5 & 0.5 \\ 0.5 & 1.5 \end{pmatrix}$ and u(x, y) = 16x(1-x)y(1-y). Mesh1 Mesh4_1 Mesh4_2

Test 1 : mild anisotropy. Test 1.1 - mesh1_1

Comparison of L^2 norm of the solution (order in $\{2,3\}$)

and its gradient (order in $\{1,2\}$)

10/46

Test 1 : mild anisotropy.Test 1.1 - mesh4_i

Minimum and maximum of the approximate solutions

	mesh 4_1		mesh 4_2	
	umin	umax	umin	umax
CMPFA	9.95E-03	1.00E+00	2.73E-03	9.99E-01
CVFE	0.00E+00	8.43E-01	0.00E + 00	9.14E-01
DDFV-BHU	1.33E-02	9.96E-01	3.63E-03	9.99E-01
DDFV-HER	0.00E+00	1.03E + 00	0.00E + 00	1.01E + 00
DDFV-MNI	-3.09E-01	1.03E + 00	0.00E + 00	1.00E+00
DDFV-OMN	1.34E-02	1.03E+00	3.65E-03	1.01E + 00
DG-C	-2.33E-03	9.96E-01	-3.24E-04	9.99E-01
DG-W	-7.90E-05	9.22E-01	-8.18E-06	9.66E-01
FEQ1	0.00E+00	8.61E-01	0.00E+00	9.37E-01
FEQ2	0.00E+00	9.99E-01	0.00E + 00	1.00E+00
FVHYB	2.14E-03	9.84E-01	7.16E-04	9.93E-01
FVSYM	7.34E-03	9.59E-01	2.33E-03	9.89E-01
MFD-BLS	8.54E-03	9.55E-01	2.44E-03	9.87E-01
MFD-FHE	9.73E-03	9.45E-01	2.90E-03	9.83E-01
MFD-MAN	6.64E-03	9.71E-01	1.50E-03	9.93E-01
MFD-MAR	8.82E-03	9.60E-01	2.47E-03	9.88E-01
MFV	1.08E-02	9.42E-01	3.34E-03	9.82E-01
NMFV	1.30E-02	1.11E + 00	3.61E-03	1.04E+00
SUSHI-NP	7.64E-03	8.88E-01	2.33E-03	9.61E-01

 $-\operatorname{div}(\mathbf{K}\nabla u) = f \text{ in } \Omega$

Non homogeneous Dirichlet boundary conditions

with $\mathbf{K} = \begin{pmatrix} 1.5 & 0.5 \\ 0.5 & 1.5 \end{pmatrix}$ and $u(x, y) = \sin((1-x)(1-y)) + (1-x)^3(1-y)^2$.

Test 1 : mild anisotropy. Test 1.2 - mesh1

Comparison of L^2 norm of the solution (order in $\{2,3\}$)

and its gradient (order in $\{1,2\}$)

Test 1 : mild anisotropy. Test 1.2 - mesh3

Comparison of L^2 norm of the solution (order in $\{2,3\}$)

and its gradient (order in $\{1, 1.5, 2\}$)

- **1** Introduction
- 2 The participating schemes and teams
- **3** Test 1 : mild anisotropy
- Test 2 : numerical locking
- **5** Test 3 : oblique flow
- **6** Test 4 : vertical fault
- **7** Test 5 : heterogeneous rotating anisotropy
- **3** Test 6 : oblique drain
- **①** Test 7 : oblique barrier
- Test 8 : perturbed parallelograms
- **①** Test 9 : anisotropy and wells
- Concluding remarks and perspectives

Test 2 : numerical locking

 $-\operatorname{div}(\mathbf{K}\nabla u) = f \text{ in } \Omega$

Neumann boundary conditions and $\int_{\Omega} u \, dx = 0$

with
$$\mathbf{K} = \begin{pmatrix} 1 & 0 \\ 0 & 10^5 \end{pmatrix}$$
 and $u(x, y) = \sin(2\pi x)e^{-2\pi 10^{-2.5}y}$.

	min(umin), i	max(umax), i	ocvl2	ocvgrad	erflm
CMPFA	-1.10E+00, 1	1.04E+00, 3	1.09	/	6.36E + 02
CVFE	-1.01E-00, 2	1.01E-01, 2	2.00	1.00	1.55E + 01
DDFV-BHU	-9.27E-01, 1	1.17E+00, 1	1.76	1.21	7.51E + 00
DDFV-HER	-4.20E-01, 2	9.12E+00, 4	/	/	7.16E-03
DDFV-OMN	-8.24E-01, 1	7.76E-01, 1	2.00	1.00	2.11E + 00
DG-W	-1.18E-01, 1	1.18E-01, 1	2.00	1.00	1.69E + 01
FEP1	-9.48E-03, 1	9.75E-03, 1	2.00	1.01	/
FEP2	-9.56E-01, 1	9.56E-01, 1	2.97	2.00	/
FVSYM	-1.76E+00, 2	1.80E+00, 2	2.38	1.47	7.29E + 00
MFD-BLS	-6.50E+00, 2	5.75E+00, 2	2.54	/	3.59E + 01
MFD-FHE	-6.50E+00, 2	5.75E+00, 2	2.54	1.51	3.59E + 01
MFD-MAN	-6.62E+00, 2	5.50E + 00, 2	2.49	1.50	3.58E + 01
MFD-MAR	-6.50E+00, 2	5.75E+00, 2	2.53	/	3.59E + 01
MFE	-6.50E+00, 2	5.75E+00, 2	2.53	1.47	3.59E + 01
MFV	-6.50E+00, 2	5.75E+00, 2	2.41	1.51	3.58E + 01
SUSHI-P	-6.50E+00, 2	5.75E+00, 2	2.53	1.47	3.59E + 01
SUSHI-NP	-1.93E-02, 4	1.89E-02, 4	0.37	1.99	/

- Introduction
- 2 The participating schemes and teams
- **3** Test 1 : mild anisotropy
- Test 2 : numerical locking
- **5** Test 3 : oblique flow
- **6** Test 4 : vertical fault
- **7** Test 5 : heterogeneous rotating anisotropy
- **3** Test 6 : oblique drain
- **①** Test 7 : oblique barrier
- Test 8 : perturbed parallelograms
- **①** Test 9 : anisotropy and wells
- Concluding remarks and perspectives

 $-\operatorname{div}(\mathbf{K}\nabla u) = 0 \text{ in } \Omega$

Non homogeneous Dirichlet boundary conditions

with
$$\mathbf{K} = R_{\theta} \begin{pmatrix} 1 & 0 \\ 0 & 10^{-3} \end{pmatrix} R_{\theta}^{-1}, \, \theta = 40 \text{ degrees}$$

$$\bar{u}(x, y) = \begin{cases} 1 & \text{on } (0, .2) \times \{0.\} \cup \{0.\} \times (0, .2) \\ 0 & \text{on } (.8, 1.) \times \{1.\} \cup \{1.\} \times (.8, 1.) \\ \frac{1}{2} & \text{on } ((.3, 1.) \times \{0\} \cup \{0\} \times (.3, 1.) \\ \frac{1}{2} & \text{on } (0, .7) \times \{1.\} \cup \{1.\} \times (0, 0.7) \end{cases}$$

Test 3 : oblique flow

The values of umin, umax

	umin_i	umax_i	i				
CMPFA	6.90E-02	9.31E-01	1		umin_i	umax_i	i
	9.83E-04	9.99E-01	7	FVSYM	6.85E-02	9.32E-01	1
CVFE	0.00E+00	1.00E+00	1		4.92E-04	9.99E-01	8
	0.00E+00	1.00E+00	7	LATTB	1.14E-01	8.86E-01	1
DDFV-BHU	-4.72E-03	1.00E+00	1		9.36E-04	9.99E-01	7
	-5.31E-04	1.00E + 00	7	MFD-BLS	6.09E-02	9.39E-01	1
DDFV-HER	-4.72E-03	1.00E+00	1		1.29E-03	9.99E-01	7
	-5.96E-08	1.00E+00	7	MFD-FHE	7.06E-02	/	1
DDFV-MNI	-4.73E-03	1.00E+00	1		1.00E-03	9.99E-01	7
	-1.07E-03	1.00E+00	5	MFD-MAN	7.56E-02	9.24E-01	1
DDFV-OMN	1.04E-01	8.96E-01	1		8.01E-04	9.99E-01	8
	1.01E-03	9.99E-01	7	MFD-MAR	6.09E-02	9.39E-01	1
DG-C	-9.35E-02	1.07E + 00	1		1.00E-03	9.99E-01	8
S. C. S. P. C.	-1.32E-03	1.00E+00	7	MFE	3.12E-02	9.69E-01	1
DG-W	-4.11E-02	1.04E+00	1		5.08E-04	9.99E-01	8
	-3.71E-03	1.00E+00	7	MFV	1.22E-02	8.78E-01	1
FEQ1	0.00E+00	1.00E+00	1		7.92E-04	9.99E-01	7
	0.00E+00	1.00E+00	7	NMFV	1.11e-01	8.88e-01	1
FEQ2	0.00E+00	1.00E+00	1		1.28E-03	9.99E-01	7
	0.00E+00	1.00E+00	7	SUSHI-NP	6.03E-02	9.40E-01	1
FVHYB	-1.75E-01	1.17E + 00	1		8.52E-04	9.99E-01	7
	-1.00E-03	1.00E+00	6				

Test 3 : oblique flow

The energies

	ener1	eren_i	i		ener1	eren_i	i
CVFE	2.24E-01	8.42E-02	1	FVSYM	2.20E-01	0.00E + 00	1
/	2.42E-01	3.33E-03	7		2.42E-01	0.00E + 00	8
DDFV-BHU	2.14E-01	9.60E-02	1	LATTB	2.42E-01	1.64E-02	1
	2.42E-01	7.11E-06	7		2.42E-01	3.00E-04	7
DDFV-HER	2.14E-01	9.46E-02	1	MFD-BLS	2.38E-01	4.44E-15	1
	2.42E-01	1.91E-05	7		2.42E-01	6.74E-13	7
DDFV-MNI	2.14E-01	9.61E-02	1	MFD-FHE	2.19E-01	2.09E-01	1
	2.42E-01	1.86E-04	5		2.42E-01	1.05E-04	7
DDFV-OMN	1.81E-01	3.68E-03	1	MFD-MAN	1.91E-01	1.87E-14	1
	2.42E-01	1.77E-06	7		2.42E-01	3.70E-14	8
DG-C	5.04E-01	9.88E-02	1	MFD-MAR	2.38E-01	9.85E-13	1
	2.42E-02	2.48E-05	7		2.42E-01	1.97E-10	8
DG-W	1.90E-01	5.67E-01	1	MFE	1.25E-01	2.46E-02	1
	2.44E-01	2.85E-05	7		2.41E-01	2.91E-03	8
FEQ1	2.21E-01	3.67E-01	1	MFV	4.85E-01	8.23E-07	1
	2.44E-01	3.17E-02	7		2.42E-01	9.74E-06	7
FEQ2	2.64E-01	3.41E-01	1	NMFV	2.33e-01	1.45e-01	1
	2.42E-01	0.00E+00	7		2.45E-01	1.94E-02	7
FVHYB	2.13E-01	2.55E-01	1	SUSHI-NP	2.25E-01	3.01E-01	1
	2.42E-01	8.19E-03	6		2.43E-01	1.28E-02	7

- **1** Introduction
- 2 The participating schemes and teams
- **3** Test 1 : mild anisotropy
- Test 2 : numerical locking
- **5** Test 3 : oblique flow
- **6** Test 4 : vertical fault
- **7** Test 5 : heterogeneous rotating anisotropy
- **3** Test 6 : oblique drain
- **①** Test 7 : oblique barrier
- Test 8 : perturbed parallelograms
- **①** Test 9 : anisotropy and wells
- Concluding remarks and perspectives

Test 4 : vertical fault

mesh5

Test 4 : vertical fault

Maximum principle

▶ Problems only with the DG methods.

The values of the energies

	ener1	eren	ener1	eren
	mesh5	mesh5	mesh5_ref	mesh5_ref
CVFE	45.9	1.04E-02	43.3	6.25E-04
DDFV-BHU	42.1	3.65E-02	43.2	1.27E-03
DDFV-HER	49.3	1.75E-01	43.8	1.64E-02
DDFV-MNI	/	/	43.8	6.23E-02
DDFV-OMN	42.2	3.65E-02	43.2	1.28E-03
DG-W	43.5	1.38E-02	43.2	7.63E-04
FEQ1	/	/	43.3	2.31E-03
FEQ2	/	/	43.2	0.00E + 00
FVHYB	41.4	6.12E-02	/	/
MFD-BLS	33.9	7.93E-14	43.2	2.84E-12
MFD-FHE	/	/	43.2	3.53E-04
MFD-MAN	31.4	1.16E-12	43.2	4.71E-14
MFD-MAR	41.1	1.30E-13	43.2	2.69E-12
MFV	49.9	4.21E-05	43.2	1.88E-05
NMFV	/	/	43.2	5.92E-04
SUSHI-NP	39.1	6.67E-02	43.1	8.88E-04

▶ The methods that have trouble with PPMax are the most accurate for the energy on coarse meshes.

The fluxes

	flux0	flux0	flux1	flux1	fluy0	fluy0	fluy1
/	mesh5	mesh5_ref	mesh5	mesh5_ref	mesh5	mesh5_ref	mesh5
CMPFA	-45.2	-42.1	46.1	44.4	-0.95	-2.33	4.84E-04
CVFE	-46.6	-42.2	48.5	44.5	0.87	-2.25	8.02E-04
DDFV-BHU	-40.0	-42.1	41.8	44.4	-1.81	-2.33	9.08E-04
DDFV-HER	-40.0	-42.0	41.8	44.3	-1.81	-2.35	9.08E-04
DDFV-MNI	-43.8	-39.9	45.5	42.6	-2.8	-2.68	1.18E + 00
DDFV-OMN	-40.0	-42.1	41.8	44.4	-1.81	-2.33	9.08E-04
DG-W	-43.1	-42.1	45.3	44.5	-2.19	-2.32	1.50E-03
FEQ1	/	-42.2	/	44.5	/	-2.16	/
FEQ2	/	-42.1	/	44.5	/	-2.32	/
FVHYB	-44.3	/	46.3	/	0.49	/	1.55E-04
MFD-BLS	-32.3	-42.1	36.2	44.4	-3.94	-2.33	1.22E-03
MFD-FHE	/	-42.1	/	44.5	/	-2.47	/
MFD-MAN	-29.7	-42.1	34.1	44.4	-4.37	-2.33	1.01E-03
MFD-MAR	-39.8	-42.1	42.5	44.4	-2.68	-2.33	9.95E-04
MFE	/	-42.1	/	44.4	/	-2.33	/
MFV	-44.0	-42.1	50.3	44.4	-8.03	-2.33	1.72E+00
NMFV	-43.2	-42.1	44.5	44.4	-1.23	-2.33	2.32E-04
SUSHI-NP	-40.9	-42.1	43.1	44.4	-2.21	-2.33	6.94E-04

- Introduction
- 2 The participating schemes and teams
- **3** Test 1 : mild anisotropy
- Test 2 : numerical locking
- **5** Test 3 : oblique flow
- **6** Test 4 : vertical fault
- **7** Test 5 : heterogeneous rotating anisotropy
- **B** Test 6 : oblique drain
- **9** Test 7 : oblique barrier
- Test 8 : perturbed parallelograms
- **①** Test 9 : anisotropy and wells
- Concluding remarks and perspectives

Test 5 : heterogeneous rotating anisotropy

 $-\operatorname{div}(\mathbf{K}\nabla u) = f \text{ in } \Omega$

Non homogeneous Dirichlet boundary conditions

avec

$$\mathbf{K} = \frac{1}{(x^2 + y^2)} \left(\begin{array}{cc} 10^{-3}x^2 + y^2 & (10^{-3} - 1)xy \\ (10^{-3} - 1)xy & x^2 + 10^{-3}y^2 \end{array} \right)$$

and $u(x, y) = \sin \pi x \sin \pi y$.

Test 5 : heterogeneous rotating anisotropy

Comparison of L^2 norm of the solution (order in $\{2,3\}$)

and its gradient (order in [1, 2])

Minimum and maximum values on the coarsest mesh for the schemes which do not satisfy the maximum principle

	umin	umax
CMPFA	-1.06E-01	1.09E+00
DDFV-HER	0.00E+00	1.01E + 00
DG-C	-7.95E-04	1.02E+00
DG-W	-7.68E-02	1.06E+00
feq1	0.00E+00	1.05E+00
FVHYB	-1.92E+01	5.38E + 00
FVSYM	-8.67E-01	2.57E + 00
MFE	-1.62E+00	1.90E+01

- Introduction
- 2 The participating schemes and teams
- **3** Test 1 : mild anisotropy
- Test 2 : numerical locking
- **5** Test 3 : oblique flow
- **6** Test 4 : vertical fault
- Test 5 : heterogeneous rotating anisotropy
- **B** Test 6 : oblique drain
- **9** Test 7 : oblique barrier
- Test 8 : perturbed parallelograms
- **①** Test 9 : anisotropy and wells
- Concluding remarks and perspectives

Test 6 : oblique drain

mesh7

 $-\mathrm{div}(\mathbf{K}\nabla u) = f \text{ in } \Omega$

Non homogeneous Dirichlet boundary conditions

with

$$\mathbf{K} = R_{\theta} \left(\begin{array}{cc} \alpha & 0 \\ 0 & \beta \end{array} \right) R_{\theta}^{-1},$$

and $u(x, y) = -x - \delta y$ with $\delta = \tan \theta = 0.2$.

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 10^2 \\ 10 \end{pmatrix} \text{ on } \Omega_2$$
$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 1 \\ 10^{-1} \end{pmatrix} \text{ on } \Omega_1 \cup \Omega_3$$

- ▶ Only a few schemes (CVFE, DDFV-HER, MFV, NMFV) are not exact on such a problem.
- ▶ All schemes satisfy the discrete maximum principle.
- ▶ The interest of this case lies in the approximation of the interface fluxes ~→ approximation of a coupled system of diffusion and convection equations.

- Introduction
- 2 The participating schemes and teams
- **3** Test 1 : mild anisotropy
- Test 2 : numerical locking
- **5** Test 3 : oblique flow
- **6** Test 4 : vertical fault
- **O** Test 5 : heterogeneous rotating anisotropy
- **3** Test 6 : oblique drain
- Test 7 : oblique barrier
- Test 8 : perturbed parallelograms
- **①** Test 9 : anisotropy and wells
- Concluding remarks and perspectives

Non homogeneous Dirichlet boundary conditions

with

$$\mathbf{K} = \alpha Id, \text{ for } \alpha = \begin{cases} 1 & \text{ on } \Omega_1 \cup \Omega_3, \\ 10^{-2} & \text{ on } \Omega_2, \end{cases}$$

and

mesh6

 Ω_3

 Ω_2

 Ω_1

$$u(x,y) = \begin{cases} -(y - 0.2x - 0.375) \text{ on } \Omega_1, \\ -(y - 0.2x - 0.375)/10^{-2} \text{ on } \Omega_2, \\ -(y - 0.2x - 0.425) - 0.05/10^{-2} \text{ on } \Omega_3. \end{cases}$$

Test 7 : oblique barrier

	erl2	ergrad	umin	umax
CMPFA	1.23E-15	/	-5.54	5.37E-01
CVFE	1.83E-05	3.86E-05	-5.57	5.75E-01
DDFV-BHU	1.38E-14	5.86E-14	-5.575	5.75E-01
DDFV-HER	6.53E-08	/	-5.575	5.75E-01
DDFV-MNI	1.38E-15	3.48E-14	-5.58	5.75E-01
DDFV-OMN	3.79E-08	4.51E-08	-5.58	5.75E-01
DG-C	1.39E-13	1.88E-12	-5.58	5.75E-01
DG-W	1.18E-14	1.89E-14	-5.58	5.75E-01
feq1	3.79E-15	6.49E-14	-5.575	5.75E-01
FEQ2	6.12E-15	8.19E-14	-5.575	5.75E-01
FVHYB	1.24E-15	5.10E-14	-5.54	5.37E-01
FVSYM	ε	ε	-5.53	5.37E-01
MFD-BLS	ε	/	-5.54	5.37E-01
MFD-FHE	3.25E-15	4.73E-15	-5.54	5.37E-01
MFD-MAN	1.39E-15	1.92E-15	-5.54	5.37E-01
MFD-MAR	8.19E-13	/	-5.54	5.37E-01
MFV	1.40E-08	4.69E-08	-5.54	5.37E-01
NMFV	4.98E-03	/	-5.54	5.37E-01
SUSHI-NP	1.30E-15	1.35E-14	-5.54	5.37E-01

- Introduction
- 2 The participating schemes and teams
- **3** Test 1 : mild anisotropy
- Test 2 : numerical locking
- **5** Test 3 : oblique flow
- **6** Test 4 : vertical fault
- **O** Test 5 : heterogeneous rotating anisotropy
- **B** Test 6 : oblique drain
- **①** Test 7 : oblique barrier
- Test 8 : perturbed parallelograms
- **①** Test 9 : anisotropy and wells
- Concluding remarks and perspectives

$-\operatorname{div}(\mathbf{K}\nabla u) = f \text{ in } \Omega$ Homogeneous Dirichlet boundary conditions

with $\mathbf{K} = Id$. The source term f is defined by f = 0 except on C^*

- $C^* = \text{cell}(6, 6)$
- $\int_{\text{cell}(6,6)} f(x) \, dx = 1.$

$$C^* = x^*$$

$$\int_{\Omega} f(x) \, dx = 1.$$

The distorted quadrangle mesh mesh9

Test 8 : perturbed parallelograms

Minimum and maximum values

	umin	umax		umin	umax
Fine grid	1.07E-24	4.10E-01			
CMPFA	-2.31E-02	1.03E-01	FVHYB	-3.38E-02	1.12E-01
CVFE	-1.23E-03	4.24E-02	FVSYM	-7.21E-02	1.52E-01
DDFV-BHU	-1.25E-03	8.22E-02	FVPMMD	1.22E-09	3.99E-01
DDFV-HER	-1.61E-03	8.99E-02	MFD-BLS	-1.03E-01	1.85E-01
DDFV-MNI	-1.46E-03	6.69E-02	MFD-FHE	-6.54E-02	1.44E-01
DDFV-OMN	-1.77E-03	8.36E-02	MFD-MAR	-2.62E-02	9.07E-02
DG-C	-7.33E-03	1.05E-01	MFV	-8.08E-03	5.81E-02
DG-W	-9.03E-03	6.57E-02	NMFV	3.05E-15	9.42E-02
feq1	-4.17E-03	4.90E-02	SUSHI-NP	-1.19E-03	5.65E-02
FEQ2	-5.07E-03	8.04E-02	SUSHI-P	3.26E-06	6.77E-03

Test 8 : perturbed parallelograms

Boundary fluxes

	flux0	flux1	fluy0	fluy1
Fine grid	5.46E-21	5.46E-21	5.00E-01	5.00E-01
CVFE	-1.17E-05	2.63E-05	2.87E-01	5.54E-01
DDFV-BHU	-5.814E-10	-3.35E-10	4.97E-01	5.02E-01
DDFV-HER	2.45E-10	-1.83E-10	4.80E-01	5.11E-01
DDFV-MNI	-4.37E-05	6.50E-05	5.07E-01	4.93E-01
DDFV-OMN	-6.86E-10	-4.86E-10	4.98E-01	5.02E-01
DG-C	-1.66E-07	1.41E-07	5.08E-01	4.92E-01
DG-W	5.02E-01	0.00E + 00	4.98E-01	0.00E + 00
FEQ1	5.51E-06	7.15E-05	5.46E-01	4.89E-01
FEQ2	-5.52E-05	1.96E-05	4.98E-01	5.01E-01
FVSYM	1.37E-04	-1.15E-04	4.96E-01	5.04E-01
FVPMMD	1.76E-06	3.5E-06	4.55E-01	5.44E-01
MFD-BLS	-5.14E-04	-3.13E-03	5.01E-01	5.03E-01
MFD-FHE	4.48E-04	-4.08E-03	5.03E-01	5.01E-01
MFD-MAR	-1.79E-02	2.61E-03	5.05E-01	5.10E-01
MFV	-2.30E-02	4.95E-02	2.74E-01	6.99E-01
NMFV	0.00E + 00	0.00E + 00	4.99E-01	5.01E-01
SUSHI-NP	7.35E-04	1.29E-04	4.99E-01	5.00E-01
SUSHI-P	-4.21E-02	-3.29E-02	5.38E-01	5.37E-01

- Introduction
- 2 The participating schemes and teams
- **3** Test 1 : mild anisotropy
- Test 2 : numerical locking
- **5** Test 3 : oblique flow
- **6** Test 4 : vertical fault
- **O** Test 5 : heterogeneous rotating anisotropy
- **3** Test 6 : oblique drain
- **①** Test 7 : oblique barrier
- Test 8 : perturbed parallelograms
- **①** Test 9 : anisotropy and wells
- Concluding remarks and perspectives

 $-{\rm div}({\bf K}\nabla u)=0 \mbox{ in } \Omega$ Neumann boundary conditions

with

$$\mathbf{K} = R_{\theta}^{-1} \begin{bmatrix} 1 & 0\\ 0 & 10^{-3} \end{bmatrix} R_{\theta},$$

where $\theta = 67.5^{\circ}$ and

u=0 in cell (4,6), u=1 in cell (8,6).

Values of umin and umax should be umin=0 and umax=1

	umin	umax		umin	umax
CMPFA	-6.77E-01	1.68E + 00			
CVFE	-1.16E-01	1.12E + 00	FVPMMD	0.00E + 00	1.00E + 00
DDFV-BHU	-1.38E-01	1.14E+00	MFD-BLS	-4.30E-02	1.04E + 00
DDFV-HER	-1.03E-01	1.10E+00	MFD-FHE	-4.21E-02	1.04E + 00
DDFV-OMN	-7.07E-02	1.07E+00	MFD-MAR	-4.30E-02	1.04E+00
DG-C	-1.02E-03	9.98E-01	MFE	0.00E + 00	1.00E + 00
FEQ1	-2.36E-02	1.02E + 00	MFV	-1.22E-01	1.07E + 00
FEQ2	-5.94E-03	1.01E+00	NMFV	1.83E-02	1.01E + 00
FVHYB	-3.69E-02	1.04E+00	SUSHI-NP	-1.00E+00	2.00E+00
FVSYM	-7.63E-02	1.07E+00	SUSHI-P	0.00E + 00	1.00E + 00

- Introduction
- 2 The participating schemes and teams
- **3** Test 1 : mild anisotropy
- Test 2 : numerical locking
- **5** Test 3 : oblique flow
- **6** Test 4 : vertical fault
- **O** Test 5 : heterogeneous rotating anisotropy
- **3** Test 6 : oblique drain
- **①** Test 7 : oblique barrier
- Test 8 : perturbed parallelograms
- **①** Test 9 : anisotropy and wells
- Concluding remarks and perspectives

- \rightsquigarrow Relative homogeneity of the results.
- → Higher order scheme are more precise in both L^2 and H^1 norm. DDFV method are more precise in H^1 norm.
- \rightsquigarrow Cell centered schemes and mimetic schemes are generally more robust.
- \rightsquigarrow Nonlinear schemes seem necessary to enforce the maximum principle and/or the positiveness (or monotonicity) of the schemes.

 \rightsquigarrow Positive schemes and schemes satisfying the maximum principle.

 \rightsquigarrow Coupling strongly heterogeneous problems with transport equations :

 $\begin{cases} -\operatorname{div}(\mathbf{K}\nabla p) = 0\\ c_t + \operatorname{div}(f(c)\mathbf{K}\nabla p) = 0 \end{cases}$

 $\rightsquigarrow~3\mathrm{D}$ tests on distorted nonconforming meshes

Annoncement : February 6th-March 9th 2009

\rightsquigarrow Residential month at CIRM, Marseille France.

Winter school "New trends in scientific computing. February 9th-13th 2009. http://www.latp.univ-mrs.fr/cirm09

► Organizing Commitee

- Franck Boyer (Marseille, France),
- Florence Hubert (Marseille, France),
- Jean-Claude Latché (IRSN, Cadarache, France)

Mini-courses

- Rémi Abgrall (Bordeaux France) : "Residual Schemes for Hyperbolic problems"
- Alexandre Ern (Paris, France) : "Discontinuous Galerkin Methods"
- Jean Luc Guermond (Texas, USA) "approximation des équations de Navier-stokes"
- Frédéric Nataf (Paris, France) : "Méthodes de Schwarz optimisées"
- Ulrich Ruede (Erlangen-Nuremberg, Germany) : "Multilevel methods"

► Scientific Commitee

- Christine Bernardi (Paris, France)
- Vit Dolesji (Praha, Czeck Republic)
- Raphaèle Herbin (Marseille, France)
- Christian Röhde (Bielfeld, Germany)

► Surveys

- Alfredo Bermudez (Santiago di Compostela, Spain)
- Yves Coudière (Nantes, France)
- Cédric Galusinski (Toulon, France)
- Martin Gander (Genève, Switzerland)
- Hervé Guillard (Sophia-Antipolis, France)
- Kunibert Siebert (Augsburg, Germany)
- Zdenek Strakos (Praha, Czeck Republic)
- Martin Vohralik (Paris, France)

- Others challenging tests (homogeneous, heterogeneous, comparison of other quantities, ...) by Ivar Aavatsmark.
- Some ideas for the maximum principle for the DDFV schemes by Pascal Omnes.
- Curved frontiers by Konstantin Lipnikov.
- ▶ Diffusion problems in 3D by François Hermeline.
- ▶ Some problems of IFP by Roland Masson.
- ▶ Some problems of ANDRA by Clément Chavent.