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Many design and safety studies for pressurised water reactors, steam generators and 
condensers require to use the porosity concept in control volumes.We examine here the 
suitability of some Finite-Volume schemes in order to compute a two-fluid hyperbolic model 
in a porous medium. Emphasis is put on the behaviour of Finite Volume schemes when the 
computational domain contains a sharp porosity variation. This is of course mandatory 
when aiming at coupling free and porous codes (see [1], and [7] that focuses on a specific 
homogeneous model). Properties of schemes and some more details can be found in [5].

Computing Two-Phase Flows in Porous Media 
with a Two-Fluid Hyperbolic Model 

The first test-case corresponds to a rough representation of a loss of coolant 
accident, focusing on the propagation of the rarefaction wave that hits the  
free/porous interface separating the pipes and the steam generator.
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Test case 1 : A loss of coolant accident

Three distinct Finite Volume schemes 

Fig 3: L1 norm of the error for all state 
components (focusing on WBR scheme).

A two-fluid hyperbolic model in porous media

Fig 1: Enthalpies H1 and H2 (left). Zoom on the free/porous interface for H1 (right)

The two-fluid hyperbolic model to simulate two-phase flows in porous medium is introduced 
in [8]. It is the counterpart of the models examined in [2, 3, 9]. Smooth solutions obey a 
physically relevant entropy inequality, and the governing set of equations admits unique 
jump conditions through single waves. Standard notations are used here: Wε

 

is the  
conservative variable,αk is the void fraction of phase k, and ε stands for the porosity.

Closure laws for the source terms are the following, using:

The first Finite Volume scheme corresponds to the Rusanov scheme (R), the second scheme 
(MR) corresponding to a slight modification of the latter. The third scheme nicknamed WBR 
is a straightforward extension of the scheme [10]. It relies on the well-balanced strategy 
proposed in [6], though numerical fluxes are much simpler. If  Z and  f(Z) denote:

Test case 2 : A classical one-dimensional Riemann problem

Figures 1 and 2 show the behaviour of two Riemann invariants of the steady wave 
(enthalpy and entropy) for R scheme (blue line), MR scheme (red line), and WBR 
scheme (dark dashed line) respectively.

Fig 2: Entropies S1 and S2 (left). Zoom on the free/porous interface for S1 (right).

This second test-case corresponds to a classical one-dimensional Riemann 
problem, where left and right states of porosity are 1 and 0.6 respectively. Figure 3 
provides the measure of the L1 norm of the error, focusing on the WBR scheme.It 
enables to retrieve the expected rate of convergence ½ that is enforced by the two- 
contact discontinuities.

Sketch of the wave pattern 
of the 1D Riemann problem.

the approximate solution that is computed by the WBR scheme:

requires the following numerical fluxes :

The computation of interface states Zn
i+1/2,- and Zn

i-1/2,+ requires solving two non-linear  
scalar equations at each cell interface (see [5]), thus enforcing the preservation of Riemann 
invariants of the steady wave through the interface. The WBR scheme enables to preserve 
equilibrium solutions –this is not true for R and MR schemes-, and its stability is ensured by 
a CFL-like condition. Following [7], some counterpart of the latter scheme which relies on 
an approximate well-balanced Godunov scheme may be exhibited.

and an evaluation of non-conservative terms NCT as follows:
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