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Suspensions of rod-like molecules I

Content of the talk:

A multiscale model for liquid suspensions of rod-like molecules
◮ The coupled micro-macro system
◮ Suspensions of rod-like molecules: The model
◮ The Smoluchowski equation

A characterisitc method for the 1D advection-diffusion equation
◮ Derivation of method
◮ Numerical results
◮ Future Work
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The molecules

The molecules

rod-like

non-deformable

all of equal length L and width b, with L ≫ b

contained in an incompressible viscous fluid

L

b
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Suspensions of rod-like molecules II

Suspensions of Molecules

homogeneous concentration ν throughout the fluid

Concentration Regime considered here:
◮ Dilute concentrations, i.e. ν ≪ L−d , where d ∈ {2, 3} is the

macroscopic space dimension.
◮ → Molecules can rotate freely without mutual interaction
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The coupled micro-macro model

The coupled micro-macro model

Shear forces from macroscopic velocity gradient change the
orientation of the molecules −→ Smoluchowski-equation

Orientation of molecules influences macroscopic stress of fluid
−→ additional stress term σ.

Macroscopic flow −→ Stokes equation with this additional stress σ.
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The coupled system of PDEs

Smoluchowski equation, stress, Stokes equation

∂t f + ∇x f · u + ∇n · (Pn⊥∇xun)f − Dr∆nf = 0
∫

S2

f dn = 1

f ≥ 0
∫

Sd−1

(3n ⊗ n − id) fdn = σ

∇x ·
((
∇xu + ∇t

xu
)
− pid + σ

)
= 0

∇x · u = 0

u

n

Pn⊥∇xu n := ∇xu n − (n · ∇xu n) n
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The Smoluchowski-equation I

Orientational distribution of molecules

described by the Smoluchowski equation

∂t f + u · ∇x f
︸ ︷︷ ︸

(1)

+∇n · (Pn⊥∇xun f )
︸ ︷︷ ︸

(2)

= Dr△nf
︸ ︷︷ ︸

(3)

. (1)

Interpretation of terms

(1) u · ∇x f change of f due to macroscopic advection

(2) ∇n · (Pn⊥∇xun f ) rotational change due to macroscopic shear-forces

(3) Dr△nf random change of orientation due to
Brownian motion
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The Smoluchowski equation II

Special case:

Consider spatially homogeneous solutions f = f (t, n), u = κx

∂t f + ∇n · ((Pn⊥κn)f ) = Dr∆nf

Deborah number:

De := |∇xu|/Dr

−→ Meausures shear forces relative to rotational diffusion

Analogy: Peclet-number Pe = u0L
D

for advection-diffusion
−→ measures advection relative to diffusion
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Challenge for numerical simulation

Demanding Simulation of coupled system due to

high dimension of the system, in case d = 3
◮ d = 3 macro space dimensions
◮ d − 1 = 2 micro spacedimensions
◮ =⇒ 3 + 2 = 5 space dimensions for coupled system

steep gradients that can occur in the solution of the Smoluchowski
equation if Deborah-number De is large.

◮ analogous: advection-dominated diffusion equations
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Spatially homogeneous Smoluchowski equation

Consider for dimension d = 2

spatially homogeneous initial values f (x , n, 0) = f (n, 0)

steady macroscopic shear flow u = κx2 ⇒ ∇xu =

(
0 1
0 0

)

⇒ u · ∇x f = 0

homogeneous solution f (x , n, t) = f (n, t)

Smoluchowski equation becomes
◮ ∂t f + ∂x(sin

2(x)f ) = Dr ∂xx f → advection-diffusion eq. on S1

◮ =⇒ Solution becomes steady in finite time.

u

n
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Solution for shear flow - plot over S1
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Steady state solution for shear flow
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The numerical method for advection-diffusion

So we now consider periodic advection-diffusion equation

∂t f + ∂x(Vf ) = D ∂xx f

f (x , 0) = f (x + 2π, 0)

Notation

x HERE is PREVIOUS n (for convenience)

V = V (x) = advection velocity

D = const = diffusion coefficient
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The numerical method for advection-diffusion

Method proposed here

Characteristics-based finite volume method of ELLAM type. Properties

Third order accuracy in space by use of 3rd-order B-splines
(novel approach for FV-ELLAM-type methods)

Second order accuracy in time

Unconditional stability
◮ large t-steps possible (no CFL restriction)

Use of any adaptive mesh possible which satisfies
◮ ∆xi < ∆xi−1 + ∆xi+1 ∀i

→ satisfied by all grids of practical interest since many
⋆ vary only monotonously over three grid cells, or
⋆ vary only very little over three grid cells.

accurate for large De (and large Pe).
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Derivation of Numerical Method I

∂t f + ∂x(Vf ) = D ∂xx f (2)

Let
0 = x0 < x1 < · · · < xM = 2π

be the grid.
Define the characteristics of the hyperbolic part of (2) as solutions of ODE

dx(t)

dt
= V (x(t)) (3)
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Derivation of Numerical Method II

Denote by Σi the space-time domain bounded by

the characteristics xi−1(t), xi (t) and

the t-levels tn < tn+1

Define test-functions wi of t-step tn → tn+1 by

wi (x , t) =

{

1, if (x , t) ∈ Σi

0, else.

t

tn

tn+1

x∗

i−1
xi (t)x∗

i

xi−1 xi

nt

ΣinΣi
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Derivation of Numerical Method III

Now

multiply advection-diffusion equation (2) by wi

integrate over R × R>0.

use partial integration

to obtain

xi∫

xi−1

f (x , tn+1) dx −

x∗

i∫

x∗

i−1

f (x , tn) dx

+

tn+1
∫

tn

D ∂x f (xi−1(t), t) dt −

tn+1
∫

tn

D ∂x f (xi (t), t) dt = 0,

(4)

where x∗

j = xj(t
n).
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Geometric interpretation of Integral equation

xi∫

xi−1

f (x , tn+1) dx −

x∗

i∫

x∗

i−1

f (x , tn) dx

+

tn+1
∫

tn

D ∂x f (xi−1(t), t) dt −

tn+1
∫

tn

D ∂x f (xi (t), t) dt = 0,

From t-step tn → tn+1

advection transports mass f contained in [x∗

i−1, x
∗

i ] into [xi−1, xi ]

diffusion acts as flux across the characteristics

Helzel, Kirsten, Otto (RUB and others) Suspensions of rod-like polymers FVCA 2008 17 / 23



Derivation of Numerical Method IV

Using the trapezoid rule we get

xi∫

xi−1

f (x , tn+1)dx +
∆t

2
· D ∂x f (xi−1, t

n+1) −
∆t

2
· D ∂x f (xi , t

n+1)

=

x∗

i∫

x∗

i−1

f (x , tn) dx −
∆t

2
· D ∂x f (x∗

i−1, t
n) dt +

∆t

2
· D ∂x f (x∗

i , tn)

(5)
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Derivation of numerical method V

Approximate f in (5) by piecewise quadratic spline using a B-spline basis.
=⇒

all Integrals in (5) can be evaluated analytically

(5) becomes linear system of N equations with tridiagonal structure.
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The linear system of equations

Resulting linear system

is strictly diagonal-dominant for all D ≥ 0, if ∆xi < ∆xi−1 + ∆xi+1

holds for all i .

Then the linear system
◮ is well conditioned and
◮ can be solved iteratively or directly [Strikwerda 1989].
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Simulation of Smoluchowski equation

Consider velocity gradient from a macroscopic elongational flow in 2D.

∇xu =

(
2 0
0 −1

)

Smoluchowski equation becomes

∂t f + ∂x(−
3

2
sin(2x)f ) = D ∂xx f

Steady state analytical solution:

f (x) = C exp(−
3

2D
sin2 x),

with C obtained from

∫ 2π

0
fdx = 1 (density requirement)
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Solution for elongational flow
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Elongational flow, D=1/1000

Elongational flow

L∞-error ∆x Adaptive Grid Wiggles

2, 6% 0.0123 No Yes

0, 42% 0.05 (average) Yes: ∆xmax
∆xmin

= 20 No
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Future work

comparison with other methods

higher order in time discretisation

extension to 2D

.....
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