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Context of the hyperelastic-plastic model

The hyperelastic system is well-known in elastodynamics. Godunov and

Romenskii (1973), Plohr and Sharp (1988), Trangenstein and Colella

(1991) have pointed out its importance. Since this rediscovery, many Finite
Volume schemes studies have recently been published : Miller and Colella

(2002), Titarev and Romenskii and Toro (2006), Gavrilyuck and Favrie and

Saurel (2008)...

Plasticity is easily introduced in hypoelastic models, extensively used
since Wilkins (1964). The projection of the stress on a convex plastic
domain has been described by Nouri and Rascle (1996), Després (2007) in
a rigorous mathematical frame, and the difficulty of the non-conservative
term of the objective derivatives by Colombeau and LeRoux (1986).

In our model, Kluth and Després (2008), we introduce multidimensional

plasticity by using a specific Equation of State. It is an easy way to

introduce perfect plasticity : we use the same system of PDEs as in

elastodynamics.
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The hyperelastic-plastic model

φ(t,
−→
X )

F̂ = ∇−→
X

−→x

−→v = Dt
−→x

Bt0

−→
X

Bt

−→x

PDEs : the hyperelastic system of conservation laws

It is hyperbolic, frame-indifferent (even under rigid rotations) and in a
conservative form. This allows us :

• to avoid the difficulties faced when studying mathematical solutions
of usual models,

• to use standard FV schemes, projection methods and high-order
methods.
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The hyperelastic-plastic model

A specific Equation of State

For introducing perfect plasticity in the hyperelastic system, we use the
EOS (2) which guarantees the Von Mises criteria :

‖dev(σ)‖2 ≤
2

3
Y

2
.

ε = εhydro(S , τ) + ρ0τ ψ(F̂ ). (2)

An involutive constraint

div(ρt
F̂ ) = 0

It gives the existence of the motion and the equivalence between Eulerian

and Lagrangian formulations.
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The Hugoniot experiment

Description

Two plates of the same material are impacted with opposite velocities.

This is a 1D uniaxial problem :

F̂ =

2

4

ρ0τ 0 0
0 1 0
0 0 1

3

5 and −→v =

2

4

u

0
0

3

5

and the initial condition is :

τ = τ0, e = e0, u =



V > 0 on the left
−V on the right

Then

• The hyperelastic system is the Euler hydrodynamic system.

• The specific EOS gives a non-convex EOS :
ε(τ ) is strictly convex, but not P(τ ).
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The Hugoniot experiment

In this case

• we demonstrate the unicity of the viscous solution,

• and calculate the exact solution.

P P

x
x0

τ

ELASTIC

P0

τ0

Pelastic

Pplastic

PLASTIC LEFT PLATE
RIGHT PLATE

We see on the right the split shock : on both sides, the elastic precursor is
followed by the plastic shock.
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The 1D case

In the 1D case (provided F̂ = Îd initially) :

F̂ =

2

4

F11 = ρ0τ 0 0
F21 1 0
F31 0 1

3

5

and the 7 equations hyperelastic system in mass variable
dm = ρdx = ρ0dX is :

Dt

0

@

ρ−1
0 Fi1

vi

e

1

A − ∂m

0

@

vi

σi1

v1σ11 + v2σ21 + v3σ31

1

A = 0

with

e = ε+
−→v 2

2
et σi1 =

∂ε

∂Fi1
.

FV scheme

We use a FV lagrangian scheme, conservative and consistent. We actualize
the positions of the mesh at each time step by solving −→v = Dt

−→x .
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Determination of the numerical flux

We freeze the jacobian matrix at each interface and approximate the 6
characteristic fields (λk ∈ R,Rk ∈ R

6). These aproximation gives for the
Riemann invariants

Jk = σi1 − λkvi .

They are advected :
DtJk + λk∂mvk = 0,

which we solve with the following methods :

Ordrer Scheme

1 Upwind Gives an entropic FV scheme

2 Lax-Wendroff

2 Beam-Warming

3 O3 de [1] L1 and L∞ stable (asymptotic)

[1] See presentation of B. Després, FVCA5.
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Determination of the flux

The Lagrangian formalism

has the following consequences :

• we manipulate symmetric matrix of size 3 (the acoustic tensor in
particular),

• the characteristic spectrum is definitively signed,

• we can construct entropic schemes (see [2]).

[2] B. Després, Lagrangian systems of conservation laws, Numerische Mathematik 89, 2001.

We used approximate characteristic fields so as to avoid discontinuity of
eigenvectors when eigenvalues are crossing.

In the following, we don’t use any limiters. Thus, we observe the Gibbs

phenomenon for high-order methods. It is clearly reduced with order 3
because of the L1 and L∞ stability.
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Non-linear elasticity

We validate the FV schemes with Finite Deformation Elastic test cases,
taken from :
[3] G.H.Miller, An iterative Riemann solver for systems of hyperbolic conservation laws with application to

hyperelastic solid mechanics, JCP 193, 198-225 (2003),

[4] V.A.Titarev, E.Romenski, E.F.Toro, Exact Riemann problem solutions and upwind fluxes for nonlinear

elasticity, Isaac Newton Institute for Mathematical Sciences, preprint NI06018, 2006.

We calculate the entropic solution with each method, for all variables, for
each test case.
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Second test case of Miller, a collision with shear and crossing eigenvalues.
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The Hugoniot experiment

The order 1 method (which is entropic) calculates the viscous solution

(whose unicity has been proved).
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Fig.: Right-facing split shock in the Hugoniot experiment on steel
for a velocity of 150m/s.

But the high-order methods calculate other solutions. We check that

entropy increases in each cell nearly everywhere.
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With phase transformation

In the EOS ε = εhydro + ρ0τψ(F̂ ), we modify εhydro to simulate a phase
transformation, which occurs in the elastic part.
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As before, the order 1 method calculates the viscous solution, and the
high-order methods calculates other solutions.
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Conclusion and future prospects

Our elastic-perfectly plastic model :

• gives a rigorous frame to the mathematical study of the Hugoniot
experiment,

• opens elastic-plasticity in finite deformation to the usual Finite
Volume Methods, such as projection or high-order methods,

• but raises the question of capturing viscous solutions with high-order
methods, as did [5], or the question of knowing the calculated
solution associated with such methods.

[5] O. Heuzé and S. Jaouen and H. Jourdren,

Dissipative issue of high order shock-capturing schemes with non-convex equations of state, JCP, 2008.

Our major prospect is to implement a 2D lagrangian scheme based on the

hydrodynamic scheme with nodal solvers developed by C. Mazeran (phd

2007). The first results are promising : we reproduce 1D experiments,

hydrodynamic cases and the Taylor test are qualitatively good.
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The Hugoniot experiment in 2D
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We calculate the 1D exact solution with the 2D scheme.

Gilles Kluth – FV schemes for hyperelastic-plastic models in finite deformations. 15/16



The
hyperelastic-
plastic
model

The 1D FV
schemes

1D numeric
results

2D extension

Taylor test

Impact of a cylinder on a rigid wall. ρ(x , y)
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