Non-overlapping Schwarz algorithm for solving 2D m-DDFV schemes Stella KRELL LATP-Marseille joint work with F. Boyer and F. Hubert Wednesday june 11th 2008 FVCA5 - Aussois

1 Introduction

- Schwarz algorithm
- Schwarz algorithm and DDFV schemes

2 The DDFV schemes with mixed Dirichlet/Fourier boundary conditions

8 Non-overlapping Schwarz algorithm for DDFV

4 Numerical results

Outline

1 Introduction

- Schwarz algorithm
- Schwarz algorithm and DDFV schemes

2 The DDFV schemes with mixed Dirichlet/Fourier boundary conditions

3 Non-overlapping Schwarz algorithm for DDFV

Mumerical results

Schwarz algorithm

Non-overlapping Schwarz method proposed by Lions 90

To solve

$$-\Delta u = f$$
 in $\Omega = \Omega_1 \cup \Omega_2$,

u = h on $\partial \Omega$.

we use the following iterative algorithm for i=1, 2

$$\begin{cases} -\Delta u_i^{(n+1)} = f \text{ in } \Omega_i, \\ u_i^{(n+1)} = h_i \text{ on } \partial\Omega \cap \partial\Omega_i, \\ \frac{\partial u_i^{(n+1)}}{\partial n_i} + \lambda u_i^{(n+1)} = -\frac{\partial u_j^{(n)}}{\partial n_j} + \lambda u_j^{(n)} \text{ on } \Gamma_{i,j} = \partial\Omega_i \cap \partial\Omega_j \end{cases}$$

where $\lambda > 0$.

Interest

- ▶ Reduce the size of systems to solve
- ▶ Use this algorithm as preconditioner

 Γ_{12}

Problem

▶ The problem

$$\begin{aligned} -\operatorname{div}(A(x) \cdot \nabla u(x)) =& f(x), \quad x \in \Omega, \\ u =& h, \quad \text{on } \partial \Omega. \end{aligned}$$

- Ω is an open bounded polygonal domain of \mathbb{R}^2 .
- $A: \Omega \to \mathcal{M}_{2,2}(\mathbb{R}), A$ uniformly elliptic and bounded.
- $\blacktriangleright f \in L^2(\Omega), \, h \in H^{\frac{1}{2}}(\partial \Omega).$

The problem (1) is approximated by DDFV schemes

(1)

Outline of the study :

- ▶ Adaptation of the DDFV schemes to mixed Dirichlet/Fourier boundary conditions.
- ▶ Construction of a Schwarz algorithm called S-DDFV.
- ▶ Rewriting the DDFV schemes as possible limit problem of the S-DDFV algorithm.
- ▶ Finally, we prove the convergence of S-DDFV algorithm.

DDFV Meshes

DDFV Meshes

DDFV Meshes

$$\nabla^{\mathcal{D}} u^{\tau} = \frac{1}{\sin \alpha_{\mathcal{D}}} \left(\frac{u_{\mathcal{L}} - u_{\mathcal{K}}}{m_{\sigma^*}} \vec{n}_{\sigma\mathcal{K}} + \frac{u_{\mathcal{L}^*} - u_{\mathcal{K}^*}}{m_{\sigma}} \vec{n}_{\sigma^*\mathcal{K}^*} \right)$$

1 Introduction

- Schwarz algorithm
- Schwarz algorithm and DDFV schemes

The DDFV schemes with mixed Dirichlet/Fourier boundary conditions

3 Non-overlapping Schwarz algorithm for DDFV

Mumerical results

▶ Adaptation the m-DDFV scheme to mixed Dirichlet/Fourier boundary conditions.

$$-\operatorname{div}(A \cdot \nabla u) = f, \quad \text{in } \Omega, \tag{2a}$$

$$u = h, \text{ on } \partial\Omega \setminus \Gamma,$$
 (2b)

$$-(A \cdot \nabla u, \vec{n}) = \lambda u - g, \text{ on } \Gamma.$$
(26)

► Adaptation the m-DDFV scheme to mixed Dirichlet/Fourier boundary conditions.

$$-\operatorname{div}(A \cdot \nabla u) = f, \quad \text{in } \Omega, \tag{2a}$$

$$u = h, \text{ on } \partial\Omega \setminus \Gamma,$$
 (2b)

$$-(A \cdot \nabla u, \vec{n}) = \lambda u - g, \text{ on } \Gamma.$$

- On the primal mesh :
 - Integrate the equation (2a) on interior primal cell $\kappa \in \mathfrak{M}$,
 - Impose the Fourier boundary condition (2c) on $\kappa \in \partial \mathfrak{M}_{\Gamma}$,
 - Impose the Dirichlet boundary condition (2b) on $\kappa \in \partial \mathfrak{M}_D$.

(2c)

► Adaptation the m-DDFV scheme to mixed Dirichlet/Fourier boundary conditions.

$$-\operatorname{div}(A \cdot \nabla u) = f, \quad \text{in } \Omega, \tag{2a}$$

$$u = h, \text{ on } \partial\Omega \setminus \Gamma,$$
 (2b)

$$-(A \cdot \nabla u, \vec{n}) = \lambda u - g, \text{ on } \Gamma.$$

- On the primal mesh :
 - Integrate the equation (2a) on interior primal cell $\kappa \in \mathfrak{M}$,
 - Impose the Fourier boundary condition (2c) on $\kappa \in \partial \mathfrak{M}_{\Gamma}$,
 - Impose the Dirichlet boundary condition (2b) on $\kappa \in \partial \mathfrak{M}_D$.
- \blacktriangleright On the dual mesh :
 - Integrate the equation (2a) on interior dual cell $\kappa^* \in \mathfrak{M}^*$,
 - Integrate the equation (2a) on boundary dual cell $\kappa^* \in \partial \mathfrak{M}_{\Gamma}^*$,
 - Impose the Dirichlet boundary condition (2b) on $\kappa^* \in \partial \mathfrak{M}_D^*$.

(2c)

► Adaptation the m-DDFV scheme to mixed Dirichlet/Fourier boundary conditions.

$$-\operatorname{div}(A \cdot \nabla u) = f, \quad \text{in } \Omega, \tag{2a}$$

$$u = h, \text{ on } \partial\Omega \setminus \Gamma,$$
 (2b)

$$-(A \cdot \nabla u, \vec{n}) = \lambda u - g, \text{ on } \Gamma.$$

- On the primal mesh :
 - Integrate the equation (2a) on interior primal cell $\kappa \in \mathfrak{M}$,
 - Impose the Fourier boundary condition (2c) on $\kappa \in \partial \mathfrak{M}_{\Gamma}$,
 - Impose the Dirichlet boundary condition (2b) on $\kappa \in \partial \mathfrak{M}_D$.
- \blacktriangleright On the dual mesh :
 - Integrate the equation (2a) on interior dual cell $\kappa^* \in \mathfrak{M}^*$,
 - Integrate the equation (2a) on boundary dual cell $\kappa^* \in \partial \mathfrak{M}_{\Gamma}^*$,
 - Impose the Dirichlet boundary condition (2b) on $\kappa^* \in \partial \mathfrak{M}_D^*$.

▶ The corresponding Schwarz algorithm does not converge to the m-DDFV scheme.

(2c)

Second Idea : new unknowns

▶ New flux unknowns are used $\varphi_{\kappa^*, \mathcal{L}}$ on half edges in Γ .

m-DDFV with mixed boundary conditions

We shall write for short

 $\mathcal{L}^{\tau}_{\Omega,\Gamma}(u^{\tau},\varphi^{\tau},f^{\tau},h^{\tau},g^{\tau}) = 0.$ (3)

Boyer-Hubert 08

Theorem (Error estimate for m-DDFV, with Dirichlet boundary condition)

If $u_e \in H^2(\mathfrak{D})$ solution of (1), then u^{τ} and $\nabla^{\mathfrak{D}} u^{\tau}$ are first order approximations of u_e and ∇u_e , respectively, in the L^2 norm.

Boyer-Hubert-Krell Preprint

Theorem (Existence and uniqueness, with mixed boundary condition)

The scheme (3) possesses a unique solution $U^{\tau} = (u^{\tau}, \varphi^{\tau}) \in \mathbb{R}^{\tau} \times \Phi_{\Gamma}^{\tau}$.

1 Introduction

- Schwarz algorithm
- Schwarz algorithm and DDFV schemes

2 The DDFV schemes with mixed Dirichlet/Fourier boundary conditions

8 Non-overlapping Schwarz algorithm for DDFV

Mumerical results

derivation of the S-DDFV algorithm

► The new flux unknows $\varphi_{\kappa^*, \mathcal{L}}$ are used on half edges in the interface Γ to discretize the condition (2c).

Iterative domain decomposition solver

- Choose $g_0^{\tau_i} \in \Phi_{\Gamma}^{\tau_i}, \forall i \in \{1, 2\}.$
- ▶ $\forall n \ge 0, i \in \{1, 2\}, j \ne i$:
 - Calculate $u_{n+1}^{\mathcal{T}_i}, \varphi_{n+1}^{\mathcal{T}_i}$ satisfying

$$\mathcal{L}_{\Omega_i,\Gamma}^{\mathcal{T}_i}(u_{n+1}^{\mathcal{T}_i},\varphi_{n+1}^{\mathcal{T}_i},f^{\mathcal{T}_i},h^{\mathcal{T}_i},g_n^{\mathcal{T}_j})=0.$$
(4)

▶ Calculate $g_{n+1}^{T_i}$ by

$$\forall \left[x_{\mathcal{K}^*} x_{\mathcal{L}} \right] \in \partial \mathfrak{A}_{\Gamma}, \quad g_{i,\mathcal{K}^*,\mathcal{L}}^{n+1} = -\varphi_{i,\mathcal{K}^*,\mathcal{L}}^{n+1} + \lambda \frac{u_{i,\mathcal{K}^*}^{n+1} + u_{i,\mathcal{L}}^{n+1}}{2} \tag{5}$$

Proposition

The initial data $g_0^{\tau_i}$ being given, Algorithm (4)-(5) defines a unique sequence $(U_n^{\tau_i})_n$ in $\mathbb{R}^{\tau_i} \times \Phi_{\Gamma}^{\tau_i}$, for i = 1, 2.

Iterative domain decomposition solver

- Choose $g_0^{\tau_i} \in \Phi_{\Gamma}^{\tau_i}, \forall i \in \{1, 2\}.$
- ▶ $\forall n \ge 0, i \in \{1, 2\}, j \ne i$:
 - Calculate $u_{n+1}^{\mathcal{T}_i}, \varphi_{n+1}^{\mathcal{T}_i}$ satisfying

$$\mathcal{L}_{\Omega_i,\Gamma}^{\mathcal{T}_i}(u_{n+1}^{\mathcal{T}_i},\varphi_{n+1}^{\mathcal{T}_i},f^{\mathcal{T}_i},h^{\mathcal{T}_i},g_n^{\mathcal{T}_j})=0.$$
(4)

▶ Calculate $g_{n+1}^{T_i}$ by

$$\forall [x_{\mathcal{K}^*} x_{\mathcal{L}}] \in \partial \mathfrak{A}_{\Gamma}, \quad g_{i,\mathcal{K}^*,\mathcal{L}}^{n+1} = -\varphi_{i,\mathcal{K}^*,\mathcal{L}}^{n+1} + \lambda \frac{u_{i,\mathcal{K}^*}^{n+1} + u_{i,\mathcal{L}}^{n+1}}{2} \tag{5}$$

Proposition

The initial data $g_0^{\tau_i}$ being given, Algorithm (4)-(5) defines a unique sequence $(U_n^{\tau_i})_n$ in $\mathbb{R}^{\tau_i} \times \Phi_{\Gamma}^{\tau_i}$, for i = 1, 2.

▶ Express the m-DDFV scheme as limit problem of the S-DDFV algorithm.

m-DDFV scheme as limit of S-DDFV

Theorem

 $\mathcal{T} = (\mathcal{T}_i)$ a mesh associated to the domain decomposition $\Omega = \bigcup_i \Omega_i$. u^{τ} solution of the m-DDFV scheme on the mesh \mathcal{T} with homogeneous Dirichlet condition.

 $\forall \ i \in \{1,2\}, \ \exists \ (u^{\tau_i}, \varphi^{\tau_i}, g^{\tau_i}) \in \mathbb{R}^{\tau_i} \times \Phi_{\Gamma}^{\tau_i} \times \Phi_{\Gamma}^{\tau_i} \ such \ that$

$$\begin{cases} \mathcal{L}_{\Omega_{i},\Gamma}^{\mathcal{T}_{i}}(u^{\mathcal{T}_{i}},\varphi^{\mathcal{T}_{i}},f^{\mathcal{T}_{i}},h^{\mathcal{T}_{i}},g^{\mathcal{T}_{i}})=0,\\ u_{i,\mathcal{K}}=u_{\mathcal{K}}, \quad for \ \mathcal{K}\in\mathfrak{M}_{i}\cup\partial\mathfrak{M}_{i,D},\\ u_{i,\mathcal{K}^{*}}=u_{\mathcal{K}^{*}}, \quad for \ \mathcal{K}^{*}\in\mathfrak{M}_{i}^{*}\cup\partial\mathfrak{M}_{i}^{*},\\ \sum_{k=1}^{N}\left(\varphi_{i,\mathcal{K}_{k}^{*},\mathcal{L}_{k}}-\varphi_{i,\mathcal{K}_{k+1}^{*},\mathcal{L}_{k}}\right)=0. \end{cases}$$

Convergence of the Schwarz algorithm

Boyer-Hubert-Krell Preprint

Theorem

 $\blacktriangleright \forall g_0^{\mathcal{T}_i} \in \Phi_{\Gamma}^{\mathcal{T}_i}, \ i \in \{1, 2\},$

▶ $(u_n^{\tau_i})_{i=1,2}$ solution of (4)-(5) converges towards u^{τ} m-DDFV solution when $n \longrightarrow \infty$.

If
$$\sum_{k=1}^{N} \left(g_{i,\kappa_{k}^{*},\mathcal{L}_{k}}^{0} - g_{i,\kappa_{k+1}^{*},\mathcal{L}_{k}}^{0} \right) = \frac{\lambda}{2} \left(h_{\kappa_{1}^{*}} - h_{\kappa_{N+1}^{*}} \right), \quad i = \{1,2\}$$

then, $\varphi_{i,\kappa^*,\mathcal{L}}^n$ also converges towards $\varphi_{i,\kappa^*,\mathcal{L}}^{\mathcal{T}}$ when $n \longrightarrow \infty$.

 \blacktriangleright U^n converges U^{τ} when $n \longrightarrow \infty$.

1 Introduction

- Schwarz algorithm
- Schwarz algorithm and DDFV schemes

2 The DDFV schemes with mixed Dirichlet/Fourier boundary conditions

3 Non-overlapping Schwarz algorithm for DDFV

4 Numerical results

Case 1 - Two domains

Case 1 - Two domains

Case 2 - two domains

Comparison between

$$E_{1} = \frac{||u_{n}^{T_{i}} - u^{T_{i}}||_{2}}{||u^{T_{i}}||_{2}} \text{ and}$$

$$E_{2} = \frac{||u_{n}^{T_{i}} - u_{e}||_{2}}{||u_{e}||_{2}} \text{ as a function of the}$$
number of iterations. $\lambda = 200$

Case 2 - two domains

Case 3 - Influence of the numbers of subdomains

$$f(x,y) = \begin{cases} -1000\sin(2.5\pi(x-1.3)) & \text{if } 1.3 < x < 1.7, \\ 0 & \text{else.} \end{cases}$$

Influence of parameter λ

The number of necessary iterations as a function of λ .

Case 4 - Preconditioner

Comparison between the number of iterations required by solving the DDFV scheme with

- ▶ the conjugate gradient
- \blacktriangleright the conjugate gradient preconditioned with n iterations of the S-DDFV algorithm.

References

- ► DDFV schemes
 - ▶ Domelevo & Omnès (05) M2AN Math. Model. Numer. Anal.
 - ▶ Delcourte, Domelevo & Omnès (07) SIAM J. Numer. Anal.
 - ▶ Andreianov, Boyer & Hubert (07) Num. Meth. for PDEs
- ▶ Discontinuities in the coefficient of the elliptic problem
 - ▶ Hermeline (03) Comput. Methods Appl. Mech. Engrg.
 - ▶ Boyer & Hubert (08) SIAM J. Numer. Anal.
- ► Schwarz algorithm
 - ▶ Lions (90) SIAM
 - ► Achdou, Japhet, Nataf & Maday (02) Numer. Math.
 - ▶ Cautrès, Herbin & Hubert (04) IMA J. Numer. Anal.
- ► Anisotropic problems
 - Benchmark on Discretization Schemes for Anisotropic Diffsion Problems on General Grids. Benchmark FVCA5