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ABSTRACT

This work deals with the design of a five-equation dissipative model for the simulation of two-phase flows and 1ts numerical approximation. It 1s derived from the standard six-equation

two-fluid model [1] using a first order Chapman-Enskog expansion technique [2]. Dissipative terms arise in this expansion and enable the model to deal with velocity disequilibriums, even
if 1t features only one velocity. A finite-volume numerical approximation of this model using a fractional step approach 1s proposed. First, a convective step 1s performed, taking into

account the hyperbolicity of the convective part, then the resolution of the dissipative terms 1s performed. Different numerical tests are proposed, where the capability of the model to deal

with flow featuring phenomena due to velocity disequilibriums is shown.

One-pressure, two-velocity model [1]

0o, p, Fdiv(epu) = 0

0.a,p, +div(e,p,u) = 0

0,0,p,u, +div(e, pu®u )+, Vp = M*
0,0,p,U, -I-div(o<2p2b®u_2)—l—o<2Vp = -M’

0. pe, +divie(pe+plu) = patal-l-ul.l\_/ld
0.a,p,e, +div(e,(p,e,+p)u,) = p@tfxl—u.l\_/[d

Where the drag force 1s modelled by M d_ 3(

This model 1s not hyperbolic.
= Research of alternative, hyperbolic models for the simulation of two-phase flows

Chapman-Enskog expansion [2]

R(W)

3
0}, the state vectors writes

Noting the state vector W €IR" the system is written OW+A(W)o W= +S(W)

Using a parameterization W e R", with w€E€IR’, of the space (W eR", R(W)
W=M(w)+eV WithyeRng(R'(M(v_v))) :
Assuminang(R’(M(v_v)))EBker(R'(M(v_v)))ZIRN, the projection matricesPoang(R’(M(v_v)))and
Qon Rng(R'(M(v_v))) are determined.
Thus, the two following systems are obtained

* QA[M|w)jo,M|w|-QR'|M|w||V=0S[M|w)|

e ,w+PA(M|wl||o, M(w]

+gP(at\_/+A(M(w))aXz+[awL]axm(w)—1/2R"(M(w))(v,v))z

PS(M(w||+PS'|M(w||V+0|&

The first equation has a unique solution V, and introducing this result in the last equation, we obtain a reduced
system with second-order terms.

One-pressure, one-velocity model with dissipative terms
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Numerical approximation

e Use of a fractional step approach [3]

o Explicit resolution of the hyperbolic part

= Use of an acoustic solver [4] .
: o e : .. : X X
To avoid numerical instabilities, the equation on the volume fraction 1s rewritten 1 7:, X, L— L - divu=0
Ot o, C +o,C

The conservative part 1s solved in the same time as the other equations of the system ; the non-conservative part is then

solved using a Newton algorithm, wich ensures the positivity of O .

Semi-implicit resolution of the dissipative parts
> Resolution of the "dissipative advection terms"

0,pY, = 0
o,pe = 0
(0, Cpt+ e, C1)0, 0y = €,(Y,,C=Y,x,C)u,.. Ve
This system 1s solved using an explicit upwind scheme. A CFL condition must be applied to ensure stability; if necessary,
subcycles are performed.

> Resolution of the "dissipative source terms"

0,pY, = 0
o,pe = 0
2
X X .Y, o, Y |\(p,—p
(00 CotoyCoey = —|202] (py—py) 14| Si2 S Xa | {PrmRa) |y
P PrKy, P1Kq P

This system 1s solved using a Newton method. A careful discretization ensures the stability of this step.

> Resolution of the "dissipative convection terms”

0pY, = —¢,div(pY,Y,u,)
o,pe = ¢,div((h,—h,)pY,Y,u,)
(0, Cy+ e, C,)0, ¢y, = —Eucxlo(Z(CldiV(Y2£)+C2d1'V(Y1ur))

This system 1s solved using an implicit scheme.

Numerical results
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From the six-equation model and taking R(W) = M, the following system is obtained, with u, =e¢ 0 (p1=p2)V D Figure 1: Comparison between the five-equation models (left) Figure 2: Comparison between the five-equation models (left)
. and seven-velocity model (right) : Velocities. and seven-velocity model (right) : Air mass fraction
X1 P4 . . . 2
+diva, p,u = —div(pY,Y,u,) +0 (¢}, . .
" ot Sedimentation
Xy P : :
8215 2 +div o, p,U = div(pY,Y,u,) +0 (&%) _Lo— : 1o 5
S [ [mt=02s T
50.8- |7 1Z06s 08 | |
oplu . & | - (=08s |
apt_ +d1V<p_®g>+Vp = PQ +O<Ei) | E’O*‘S‘ Zt=10s | i |
Grggity - 5 [ oo S U S S
a e . . = i 04 /’/ — oh=9.0
éot +div((pe+p)u) = d1V<<h2_h1)PY1Y2L~)+PQ-Q "‘O(Ei) Eo,zi!, P - t-08
Da, | ] . L R S Sy T
(o<1C2+o<2C1)—D +x,0,(C,—C,)divu = —x;0,(C,div(Y,u.)+C,div(Y,u,)) Height (m) % : : 6
t Y o C Y . C v Figure 3: Sedimentation test-case using the five-equation dissipative model (left) and the two-pressure,
+ — u.. : :
Yo . %Gl Ve two-velocity model (right ; results from [5]).
(e (1| B2 T2 1P g e o)
p b P Ky PiK, p ! Air-water flow through a pipe with sudden contraction and expansion
Properties
. . . . -~ A 1 O(l 0(2
- The system is unconditionnaly hyperbolic A, =u—C A=A, =A,=u  Aj=u+C where —(—=——+——
pC p,C, G5
Th <« dissipati opY s p Y —« ' ' -
- 1he system 1S dissipative 171 : ( ) _ 17271 T 2 :
a f +div P Yl Sl U+ Y2 Mr - E” ||V p” 9.77e+04  9.93e+04 F?rg]szirg 1.02e+05  1.04e+05 0.400 U,ES((]]S@ ] V(?E,J[?ae fmcg%%o 0.800
! P i na
opY,s, vdiv[py. s (u v ) _, p, Y ¥ —« IV ol Figure 4: Comparison between the five-equation non-dissipative model (top)
ot 2o " , p and the five-equation dissipative model (bottom): Pressure and air volume fraction

A large range of two-phase tlows can be characterized by an equality of the phase pressures and velocity disequilibriums. Six-equation two-fluid models, generally used to solve these

problems, are usually not hyperbolic, which can lead to numerical failures. We have presented a one-pressure one-velocity model whose dissipative terms enable us to take into account the
mechanical disequilibriums. The convective part of this model 1s hyperbolic, and it has been shown that this model can handle complex flows with counter-currents, even 1t the model

contains only one macroscopic velocity. Numerical results for this model are promising, both for flows with shocks and for flows including counter-currents.

The future work on this model 1s to perform multidimensional computations, and to implement heat and mass exchanges so that it can deal with all the interfacial phenomena.
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