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Mimetic finite difference methods in general

Mimetic finite difference (MFD) methods are applicable to a broad range of partial differen-
tial equations. The general idea is to split the strong formulation of a PDE into a system of
first-order PDEs and to discretize this system by giving discrete analoga of the usual first-order
continuum differential operators gradient, curl and divergence. These analoga are constructed
by mimicking important properties of the continuum operators like

• conservation laws

• operator symmetries

• kernels of operators

• basic theorems of vector calculus (Gauß, Stokes, Green)

MFD methods for elliptic problems

The diffusion problem is stated as a system of two first order PDEs

divv = f in Ω ⊂ R
2
,

v = −K∇u in Ω,

u = ū on ΓD,

v · n = −g on ΓN .

We construct discrete analoga for the divergence and flux operators

div : H(div, Ω) → L
2(Ω), −K∇u : H

1(Ω) →
`

L
2(Ω)

´2

that respect the followig continuum operator properties:

• Divergence theorem
Z

V

div v =

Z

∂V

v · n for V ⊂ Ω (1)

needed for local mass conservation

• Partial integration formula
Z

V

u divw +

Z

V

w · ∇u =

Z

∂V

u w · n for all u, wand V ⊂ Ω (2)

needed for the symmetry of the Laplacian

Triangulation of the domain

One of the strength of the MFD method is that it works on nearly all computational grids. There
are no constraints on the number of vertices of a cell, nor on the angles. The grids are always
considered to be conforming, but hanging nodes can simply be treated by considering them
an additional vertex with an interior angle of 180◦.

The software framework DUNE

The mimetic finite difference method was implemented within the DUNE framework. DUNE is
a numerical template library written in C++. It provides tools for the solution of partial differ-
ential equations with grid-based methods. DUNE defines interfaces for different components
involved in the solution process, for example computational grids or linear solvers. Using the
ideas of generic programming, these interfaces can be implemented by slim wrappers around
existing libraries or by new code specifically written for DUNE. As a consequence, the same
code can be used for a variety of grid managers, linear solvers etc.
DUNE consists of the following modules:

• dune-common contains the basic classes used by all DUNE-modules. It provides some
infrastructural classes for debugging and exception handling as well as a library to han-
dle dense matrices and vectors of fixed size.

• dune-grid defines a very elaborate and efficient interface for non-conforming, hierar-
chically nested, multi-element-type, parallel grids in arbitrary space dimensions. Vari-
ous powerful grid managers are wrapped for this interface, including UG, ALBERTA and
ALUGrid. An efficient structured parallel grid, the YaspGrid, is also included, as well as
a generic data output for the visualization library VTK.

• dune-istl, the Iterative Solver Template Library, provides generic sparse ma-
trix/vector classes and a variety of solvers based on these classes. A special feature is
the use of templates to exploit the recursive block structure of finite element matrices at
compile time. Available solvers include Krylov methods, (block-) incomplete decompo-
sitions and aggregation-based algebraic multigrid.

Discrete function spaces

To construct discrete analoga of the continuum differen-
tial operators, we first need discrete function spaces.

• The space Qh of discrete scalar functions consists
of functions which are constant on each cell. The
degrees of freedom of the functions are located at
the barycenters of the cells. The value of a func-
tion u ∈ Qh on the cell E is denoted by uE .

• The elements of the space Xh of discrete vector
functions are given by their normal components
on the faces of the grid. The degrees of free-
dom are located at the barycenters of the faces.
The value of the normal component of a function
v ∈ Xh on the face e with respect to the outer
normal vector of cell E is denoted by ve

E . For a
face e shared by the cells E1 and E2 we have the
compatibility condition ve

E1
= −ve

E2
.
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Discrete operators

The discrete divergence operator divh : Xh → Qh is defined to comply with the divergence
theorem (1) on each cell,

(divh v)E =
1

|E|

X

e⊂∂E

|e| v
e
E .

A discrete analogon of the partial integration formula (2) reads (assuming homogeneous
Dirichlet boundary conditions)

X

E

|E| uE divh w =
X

E

[w, (−K∇)hu]E for all u, w

with some scalar product [v,w]E on each cell E. This relation can be used as an implicit
definition of the discrete flux operator (−K∇)h, giving rise to a linear system in saddle point
form with one pressure unknown on each cell and one flux unknown on each face. By the
usual hybridization process, this system can be transformed into a positive definite system
with pressure unknowns on cells and faces.
The hybridized linear system is given by the equations

divh(−K∇)hu =
1

|E|

X

e⊂∂E

|e|
X

f⊂∂E

W
e,f
E |f |(uE − u

f ) = qE

for each cell E and the equations

`

(−K∇)hu
´e

E1

+
`

(−K∇)hu
´e

E2

=
X

f⊂∂E

n

W
e,f
E1

|f |(uE1
− u

f ) + W
e,f
E2

|f |(uE2
− u

f )
o

= 0

for each face e. The construction of the matrix WE is described in the next box.

Construction of the matrix WE

For a cell E, let kE denote the number of faces of E. Define the kE × 2 matrices R and N by

Re,i =

Z

e

(xi − xE,i), Ne,i = ei · n
e
E , (3)

where e ranges over the faces of E, i = 1, 2, xi is the i-th coordinate function, xE is the center
of mass of E and ei is the unit vector in the direction of the i-th axis. We construct a kE × kE

matrix WE according to algorithm 1 in [3]. In short, that means the following:

1. Orthonormalize the columns of the matrix R and call the resulting matrix R̃.

2. Set D = I − R̃R̃
T, where I denotes the kE × kE unit matrix.

3. Define WE =
1

|E|
NKN

T + ωD, where ω is an arbitrary positive real number and K is

simply evaluated at the cell center xE.

As numerical evidence indicates, a good choice for ω is

ω = 2 ·
trace K

|E|
·
dmax

dmin

, (4)

where dmax and dmin denote the maximum and minimum distances of the center of mass to
the centers of mass of the neighbouring cells.
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