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Introduction

When a river contains an elevated concentration of suspended sediment, to the extent that the river density is greater than that of the receiving water body, the river can plunge and create a hyperpycnal
plume or turbidity current. This hyperpycnal plume can travel significant distances until it loses its identity by entraining surrounding ambient water and dropping its sediment load.
There is great interest in turbidity currents because of their profound impact on the morphology of the continental shelves and ocean basins of the world. It is commonly accepted that they are one of
the potential processes through which sediments can be transferred to the deep sea environments. An additional concern is the destructive effect that turbidity currents have on underwater structures,
such as cables, pipelines and foundations.
A numerical model of hyperpycnal flow generated by the plunging of a river is presented. It incorporates the interaction between the turbidity current and bottom, considering eroding and deposit effects
as well as solid transport due to the velocity of the current.

1. Model description
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vsj is the settling velocity and cbj
is the near bed concentration
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• Sediment transport of bed-load particles: qb (Grass, Meyer-
Peter& Müller, Nielsen, etc.)

qb = Agu|u|mg−1, 1 ≤ mg ≤ 4, (Grass model)

2. Reformulation and properties of the model
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Theorem. Suppose R0h + Rch > 0 and ∇qb sufficiently small. Then, the system is hyperbolic.

Moreover, even though it is not strictly hyperbolic for ns > 1, one can always find a complete

set of eigenvector for A in R
ns+3.

3. Numerical scheme

1. Path conservative scheme
{

∂tW + A(W )∂xW = 0,
W (x, t = tn) = Wn
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=⇒ W

n+1/2
i

In particular, a Roe linearization based on a family of paths is selected and the scheme writes
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2. Erosion and deposition source terms

Wn+1
i = W

n+1/2
i + △tS(Wn

i )

4. Numerical simulations
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Topography evolution with transport of bed-load particles using
Grass model: Cases where erosion/deposition is or is not present

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Distance from gate (m)

D
e
p
o
s
it
 m

a
s
s
 (

g
/c

m
2
)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

B
o
tt
o
m

 e
le

v
a
ti
o
n

Deposit mass

Initial topography

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Distance from gate (m)

D
e
p
o
s
it
 m

a
s
s
 (

g
/c

m
2
)

0 0.5 1 1.5 2 2.5 3 3.5 4

B
o
tt
o
m

 e
le

v
a
ti
o
n

Deposit mass

Initial topography
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Successive turbidity currents over an initial flat bottom: Topography evolution.
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