BENCH OF ANISOTROPIC PROBLEMS TESTS WITH THE DISCRETE DUALITY FINITE VOLUME METHOD Pascal OMNES CEA Saclay, DEN-DANS-DM2S-SFME, 91191 Gif sur Yvette Cedex France. pascal.omnes@cea.fr							
	of the scheme $ \int_{a_{j}}^{G_{i_{2}}} \int_{a_{j_{2}}} \int_{a_{j_{2}}} \int_{a_{j_{2}}} \int_{a_{j_{2}}} \int_{a_{j_{2}}} \int_{a_{j_{1}}} \int_{a$	Results for Test 1.1umin= 0.0, umax=1.0.• Triangular mesh mesh1 \rightsquigarrow ocvl2= 2.0, ocvgradl2= 1.0. $\frac{1}{2}$ $\frac{1}{221}$ $\frac{265}{265}$ $\frac{1}{4.44E-15}$ $\frac{1}{2.32E-02}$ $\frac{200E-02}{2.90E-02}$ $\frac{20E-02}{2.90E-02}$ $\frac{1}{4.65E-02}$ $\frac{1}{1.85}$ $\frac{1}{1.84}$ $\frac{1}{3.33}$ $\frac{1}{3.31}$ $\frac{1}{4.533}$ $\frac{1}{3.31E-14}$ $\frac{1}{4.64E-05}$ $\frac{1}{4.92E-04}$ $\frac{1}{2.92E-04}$ \frac	Results for Test 1.2umin= 0.0, umax=1 + sin(1).• Triangular mesh mesh1 \rightsquigarrow ocvl2= 2.0, ocvgradl2= 1.0. $\frac{1}{2}$ <t< th=""></t<>				

Unknowns u_i at G_i and unknowns u_k at S_k . Integration of $-\nabla \cdot \mathbf{K} \nabla u = f$ over T_i and P_k . Evaluation of the fluxes $\int \mathbf{K} \nabla u \cdot \mathbf{n}$ over ∂T_i or ∂P_k in D_j using the discrete gradient $(\nabla_h u)_j$ defined over D_j :

$$(\nabla_h u)_j := \frac{1}{2 |D_j|} \{ [u_{k_2} - u_{k_1}] (|A'_{j1}|\mathbf{n}'_{j1} + |A'_{j2}|\mathbf{n}'_{j2}) \\ + [u_{i_2} - u_{i_1}] |A_j|\mathbf{n}_j \}.$$

The scheme reads: Find (u_i, u_k) such that for all T_i and P_k

$$-\sum_{j\in\partial T_i} \mathbf{K}_j(\nabla_h u)_j \cdot |A_j| \mathbf{n}_j = |T_i|\bar{f}_i ,$$
$$-\sum_{j\in\partial P_k} \mathbf{K}_j(\nabla_h u)_j \cdot (|A'_{j1}| \mathbf{n}'_{j1} + |A'_{j2}| \mathbf{n}'_{j2}) = |P_k|\bar{f}_k^P .$$

• Distorted quadrangular mesh $mesh4_1_i \rightsquigarrow ocvl2 = 2.0$, ocvgradl2 = 1.5.

6 1.04E-05 1.04E-05 1.04E-05 1.04E-05 1.25E-04 1.92E-02 9.72E-05 0. 1.00E+00 1.00E+00

		5	14281	127513	3 4.22E-	-14 3.20]	E-04 1.3	2E-03 5.1	1E-04 4.	01E-03 1	1.98 1.5	2
		6	20605	184225	5 -3.15E	-14 1.85E	-04 6 9.1	4E-04 3.5	57E-04 3.	03E-03 2	2.01 1.5	3
_		~		-		~						
	i	erflx0	erf	lx1	erfly0	erfly1	erflm	erflmd	uminel	uminpo	umaxel	umaxpo
	1	5.07 E-0)4 1.44	E-02 4	4.93E-03	4.27E-04	1.86E-01	3.59E-01	1.34E-02	2 0.	$1.03E{+}00$	1.01E + 00
	2	2.86E-0	04 3.86	E-03 1	1.17E-03	2.03E-04	5.87E-02	1.81E-01	3.41E-03	B 0.	1.01E + 00	1.00E + 00
	3	1.33E-0)4 1.73	E-03 5	5.14E-04	1.08E-04	2.81E-02	1.21E-01	1.52E-03	B 0.	1.00E + 00	1.00E + 00
	4	7.53 E-0)5 9.80	E-04 2	2.87E-04	6.29E-05	1.71E-02	9.13E-02	8.59E-04	l 0.	1.00E + 00	1.00E + 00
	5	4.83 E-0	05 6.28	E-04 1	.83E-04	4.07E-05	1.30E-02	7.35E-02	5.51E-04	e 0.	1.00E + 00	1.00E + 00
	6	3.35E-0)5 4.37	E-04 1	.27E-04	2.83E-05	1.02E-02	6.16E-02	3.83E-04	l 0.	1.00E + 00	1.00E + 00

• **Comments** Numerical order of convergence greater or equal than expected (superconvergence on distorted quadrangular meshes). Positivity principle respected. Slight overshoots.

• Locally refined mesh mesh3 \rightsquigarrow ocvl2= 2.0, ocvgradl2= 1.5. 2 1.31E-03 3.14E-04 3.34E-05 6.58E-03 1.06E-01 1.69E-01 3.91E-03 0. 1.75E+00 1.84E+00

 3
 1.52E-04
 7.14E-05
 3.43E-05
 2.47E-03
 5.30E-02
 9.06E-02
 9.78E-04
 0.
 1.79E+00
 1.84E+00

 4
 7.29E-06
 1.88E-05
 1.79E-05
 8.27E-04
 2.63E-02
 4.70E-02
 2.44E-04
 0.
 1.82E+00
 1.84E+00

 5
 1.33E-05
 4.94E-06
 6.75E-06
 2.60E-04
 1.31E-02
 2.39E-02
 6.10E-05
 0.
 1.83E+00
 1.84E+00

5 2.84E-05 2.13E-05 6.33E-05 1.37E-04 3.59E-03 1.97E-02 2.44E-05 0. 1.81E+00 1.84E+00

6 7.90E-06 5.33E-06 1.85E-05 3.90E-05 1.79E-03 1.01E-02 6.10E-06 0. 1.83E+00 1.84E+00

 $7 \quad 2.18 \pm -06 \quad 1.33 \pm -06 \quad 5.28 \pm -06 \quad 1.09 \pm -05 \quad 8.92 \pm -04 \quad 5.12 \pm -03 \quad 1.53 \pm -06 \quad 0. \quad 1.83 \pm +00 \quad 1.84 \pm +00$

• **Comments** Numerical order of convergence greater or equal than expected (superconvergence on non-conforming meshes). Positivity principle respected. No overshoots.

Results for Test 2 Numerical locking

Triangular mesh mesh1. umin = -1, umax = 1.• $\delta = 10^5 \rightsquigarrow \mathbf{ocvl2} = 2.0$, $\mathbf{ocvgradl2} = 1.0$.

	$ \frac{1}{2} \frac{1}{4} 1$	Image: ref 2016 1 133013 - 230E03 - 230E03 1 132E03 1. 90E01 100E-00111
Results for Test 5 : Heterogeneous rotating anisotropy e. Non conforming rectangular mesh mesh5. umin= 0.0, umax= 1.0. ~ ocvl2= 2.0, ocvgradl2= 1.5. 1 125 181 -2.78E-16 2.73E-16 2.73E-01 7.39E-02 1.02E-01 2 113 925 -2.44E-15 7.24E-02 1.43E-02 9.07E-03 3.26E-02 2.18 1.51	Results for Test 6 and Test 7• Test 6 Oblique drain, min = -1.2, max = 0, coarse (C) and fine (F) oblique meshes, mesh6 and mesh7 $\frac{\overline{\text{prid}} \ \overline{\text{munkw}} \ \overline{\text{munks}} \ $	Results for Test 8 and Test 9 • Test 8 Perturbed parallelograms mesh mesh8, umin= 0.0, umax= 1.0. <u>inukw mmmat sumfluxel sumfluxpo uminel uminpo umaxel umaxpo 221 1861 -2.92E-16 -2.92E-16 -1.77E-03 -1.30E-04 8.36E-02 4.82E-02 <u>flux0 flux1 fluy0 fluy1 -4.86E-10 4.98E-01 5.02E-01 </u> </u>

Results for Test 3: Oblique flow

• Uniform rectangular mesh mesh2. umin=0.0, umax=1.0.

j	i	nunk	kw nnma	t sumfluxe	el sumfluxp	oo umine	el uminj	po umaxe	el uma	xpo
]	1	25	181	-1.11E-1	6 -1.11E-1	6 1.04E-	01 0.	8.96E-0	01 1.00E	E + 00
4	2	113	B 925	2.10E-1	5 2.10 E-1	5 3.86E-	02 0.	9.61E-(1.00E	E + 00
3	3	481	l 4141	-3.33E-1	5 -3.33E-1	5 5.43E-	03 0.	9.95E-(01 1.00E	E + 00
4	1	198	5 17485	4.58E-1	5 4.58 E-1	5 5.99E-	03 0.	9.94E-0	01 1.00E	E + 00
Ę	5	806	5 71821	-9.96E-1	5 -9.96E-1	5 5.05E-	03 0.	9.95E-0	01 1.00E	E + 00
6	3	3251	13 29108	5 -2.42 E-1	4 -2.42E-1	4 2.42E-	03 0.	9.98E-0	01 1.00E	E + 00
7	7	1305	61 117198	81 -1.22E-1	3 -1.22E-1	3 1.01E-	03 0.	9.99E-(01 1.00E	E + 00
re	ef	2041	61 183361	l3 -5.21E-1	4 -5.21E-1	4 7.14E-	04 -4.44E	-16 9.99E-0	1.00E	E + 00
		i	flux0	flux1	fluy0	fluy1	ener1	ener2	eren	
		1	-1.80E-01	1.80E-01	-1.35E-01	1.35E-01	1.81E-01	1.80E-01 3	3.68E-03	1
										1

Results for Test 4 : Vertical fault • Non conforming rectangular mesh mesh5. umin=0.0, umax=1.0.nunkw nnmat sumfluxel sumfluxpo uminel uminpo umaxel umaxpo 200 1681 3.32E-11 3.32E-11 4.04E-02 0. 9.62E-01 1.00E+004 95F 10 1 00F 09

$\frac{1}{3} \frac{1}{428E-16} \frac{1}{1.43E-16} \frac{1}{6.01E+12} \frac{1}{2.57E-13} \frac{1}{1.23E+10} \frac{1}{2.73E+10} \frac{1}{2.99E-10} \frac{1}{-9.99E-10} \frac{1}{9.99E-10} \frac{1}{9.99E-$	$\begin{bmatrix} \frac{5}{4} & \frac{1}{104E-01} & \frac{1}{98E-02} & \frac{98E-02}{242E-01} & \frac{242E-01}{242E-01} & \frac{552E-02}{102E-06} \\ \frac{5}{7} & \frac{1}{1-33E-01} & \frac{1}{1-33E-01} & \frac{98E-02}{9.86E-02} & \frac{242E-01}{242E-01} & \frac{242E-01}{102E-06} \\ \end{bmatrix}$ • Solution on mesh2_i for i=2 (left), i=3 (center), i=4 (right) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$	• Comments The non-conforming rough mesh already provides satisfying results.
Results for Test 5 : Heterogeneous rotating anisotropy e. Non conforming rectangular mesh mesh5. umin= 0.0, umax= 1.0. → ocvl2= 2.0, ocvgradl2= 1.5. 1/1/125 1/13 925 2.4415 7.38E-10 2.03E-02 1.02E-01 1/2 1/3 925 2.4415 7.38E-10 2.03E-02 2.18 1.51 1/2 1/3 925 2.4415 7.38E-02 2.03E-02 2.18 1.51 3/3 481 4141 1.72E-15 1.83E-02 3.04E-03 2.48E-03 1.04E-02 2.14 1.58	Results for Test 6 and Test 7• Test 6 Oblique drain, min = -1.2, max = 0, coarse (C) and fine (F) oblique meshes, mesh6 and mesh7 $ \frac{\overline{grid}}{C} \frac{\overline{nuukw}}{3328} \frac{\overline{numku}}{1.38E-10} \frac{\overline{sumfuxpo}}{1.38E-10} \frac{\overline{erl2po}}{7.42E-12} \frac{\overline{erl2po}}{3.66E-14} \frac{\overline{ergrad}}{2.57E-12} \overline{\overline{grid}} \frac{\overline{rrlxpo}}{1.48E-10} \frac{\overline{erflx1}}{7.42E-12} \frac{\overline{erflxpo}}{2.85E-12} \frac{\overline{erl2po}}{3.00E-09} $ \frac{\overline{grid}}{C} \frac{\overline{erflx1}}{2.17E-11} \frac{\overline{erfly1}}{7.92E-14} \frac{\overline{erfly1}}{9.23E-14} \frac{\overline{erflxpo}}{2.41E-10} \frac{\overline{erflxpo}}{-1.41E-10} \frac{\overline{erlxpo}}{-1.20E+00} \frac{\overline{erlxpo}}{-5.43E-02} \frac{\overline{erlxpo}}{0.00E+00}	Results for Test 8 and Test 9 • Test 8 Perturbed parallelograms mesh mesh8, umin= 0.0, umax= 1.0. <u>initky mmat sumfluxel sumfluxpo initite (1.77E-03 -1.30E-04 8.36E-02 4.82E-02)</u> <u>flux0 flux1 fluy0 fluy1 (6.86E-10 4.98E-01 5.02E-01)</u>

i	erflx0	erflx1	erfly0	erfly1	erflm	erflmd	uminel	uminpo	umaxel	umaxpo
1	1.21E-01	6.58E-02	1.21E-01	6.58E-02	5.03E-01	5.61E-01	1.41E-01	0.	9.32E-01	1.00E + 00
2	$3.97 \text{E}{-}02$	1.56E-02	3.97 E-02	1.56E-02	2.42E-01	3.02E-01	3.66E-02	0.	9.76E-01	1.00E + 00
3	1.22E-02	3.82E-03	1.22E-02	3.82E-03	1.19E-01	1.53E-01	9.38E-03	0.	9.93E-01	1.00E + 00
4	3.60E-03	9.49E-04	3.60E-03	9.49E-04	5.95E-02	7.70E-02	2.38E-03	0.	9.98E-01	1.00E + 00
5	1.04E-03	2.36E-04	1.04E-03	2.36E-04	2.97 E-02	3.85E-02	5.98E-04	0.	1.00E + 00	1.00E + 00
6	2.95 E-04	5.90E-05	2.95E-04	5.90E-05	1.49E-02	1.93E-02	1.50E-04	0.	1.00E + 00	1.00E + 00
7	8.24E-05	1.47E-05	8.24E-05	1.47E-05	7.43E-03	9.64E-03	3.76E-05	0.	1.00E + 00	1.00E + 00

1.52

7 130561 1171981 2.17E-14 7.16E-05 1.06E-05 1.02E-05 1.38E-04 2.00

• **Comments** Since the tensor **K** is continuous, its values ters of gravity of the diamond cells were used for $\mathbf{K_j}$ in scheme. This provides a faster converging approximation suming a constant \mathbf{K} in each primal cell and splitting the cells into two half diamonds and invoking flux continuit only).

 Low the constraint of the constrain	bilique mesh mesh6 $\frac{1}{1000+400}$ $\frac{1}{1000+400}$ \frac	Image multiple winding of the problem of the maximum principle.1000 mine of the problem of the maximum principle.1000 mine of the maximum principle.1000 mine of the maximum principle.
--	--	---