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Résumé

The main advantage of the Discrete Duality Finite Volume (DDFV)
method applied to the Laplace equation, is that it may be used
on any type of meshes, including highly non conforming meshes.
In order to drive local refinement of the meshes, an a posteriori
error estimator is required. This work presents such an estimator,
which is derived thanks to the discrete variational formulation of the
scheme. Tests on singular and stiff problems confirm the efficiency
of the estimator.

1. The DDFV scheme
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Fig. 1: Notations related to the primal, dual and diamond cells

Unknowns φi at Gi and unknowns φk at Sk.

Integration of −∇ · ∇φ̂ = f over Ti and Pk.
Evaluation of the fluxes

∫

∇φ̂ ·n over ∂Ti or ∂Pk in Dj using the
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The scheme reads : Find (φi, φk) such that for all Ti and Pk

−
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P
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Equivalent discrete symmetric positive definite variational formula-
tion, where φh is P 1 in each Dj.
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for any discrete ψ vanishing on Γ and with
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2. Representation of the error

We seek to measure the broken H1 semi-norm of the error
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Orthogonal decomposition of the error in (L2(Ω))2

∇φ̂−∇hφh = ∇Φ̂ +∇× Ψ̂ and e2 =
∥

∥

∥
∇Φ̂

∥

∥

∥

2

0,Ω
+

∥

∥

∥
∇× Ψ̂

∥

∥

∥

2

0,Ω

with Φ̂ ∈ H1
0(Ω) and Ψ̂ ∈ H1(Ω)

e2 =
∑

j

∫

Dj

(∇φ̂−∇hφh) · ∇Φ̂ (x) dx

+
∑

j

∫

Dj

(∇φ̂−∇hφh) · ∇ × Ψ̂ (x) dx.

Let i1 (resp. i2) be the first (resp. the second) of these two inte-

grals. Applying the continuous variational formulation to (φ̂, Φ̂) and
considering an arbitrary Φ = (ΦTi ,Φ

P
k ) vanishing on Γ, for which

(1) holds, we may write
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)
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Using Green’s formula over each diamond-cell, denoting by s any
edge [GiSk] when j runs over the whole set of diamond-cells, by ns

one of the two unit normal vectors to s, and by [∇hφh · ns]s the

jump of the normal component of ∇hφh through s in the direction
ns, and finally applying the boundary conditions, we obtain
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(σ) dσ (2)

−
∑

k∈[1,K]

∑

s⊂
◦

Pk

∫

s
[∇hφh · ns]s

(

Φ̂ − ΦPk

)

(σ) dσ .

Applying the continuous Green formula to the L2(Ω) dot product

of ∇φ̂ and ∇× Ψ̂ and calculating the L2(Ω) dot product of ∇hφh
and ∇h×Ψh, where the function Ψh is associated with an arbitrary
Ψ = (ΨTi ,Ψ

P
k ) we may write
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Proceeding now as in the calculation of i1, taking into account
boundary conditions and denoting by τs one of the two unit tan-
gential vectors to s, we obtain
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3. A calculable error bound

In (2) we choose (ΦTi ,Φ
P
k ) as the L2 projections of Φ̂ on the primal

and dual cells.

ΦTi =
1

|Ti|

∫

Ti
Φ̂(x) dx ∀i , ΦPk =

1

|Pk|

∫

Pk
Φ̂(x) dx ∀k .

Then the first term of (2) may be bounded by :
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thanks to the Poincaré-type inequality

∃CTi , s.t.
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T
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Bounds for CTi depend on the shape of Ti and may be found, e.g.
in works by Carstensen and Funken and by Verfürth. As soon as f
is more regular than L2(Ω), this is a Higher Order Term (H.O.T.) :
asymptotically negligible as compared to the global convergence
order of the method (which is at most O(h)). Other H.O.T. are
provided by the second term in (2).
Let us now consider the main terms in the expression of i1. Let Ti
be a primal cell ; through Cauchy-Schwarz inequalities, we obtain
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For each segment s, we apply a trace inequality on each of the two
triangles tik,1 and tik,2 defined on Figure 1.
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Summing the norms over the various tik;α into norms on the whole
Ti and applying (4), there holds
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with (ηT )2 =
∑
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We obtain a similar bound for the dual terms in (2), and for both
terms in (3). Thus, finally,

e ≤
1

2

[

(

ηT + ηP
)2
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η′T + η′P
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+ H.O.T..

All the terms (including the H.O.T.) in the above bound are ex-
plicitly calculable. Checking the local efficiency of the quantities
ηTi , · · · is straightforward and can be performed in the usual way
using bubble functions. We shall use the local quantities η in order
to refine the mesh in an adaptive way.

4. Numerical results

4.1 Singular solution

We choose Ω =] − 0.5; 0.5[2 \ [0; 0.5] × {0}. The data f is zero

and the exact solution of the Laplace equation is φ̂ = r1/2 sin(θ/2)
in cylindrical coordinates (r, θ) centered on (0, 0). The exact solu-
tion thus belongs to H1+s(Ω), with s < 1/2. An adaptive strategy
based on the aggregation of the above estimators into one single
local estimator ηi is employed. We refine Ti if ηi ≥

1
2 maxq(ηq).

Fig. 2: initial, 5th and 10th adaptive meshes

The error behaves like N−1/2, where N is the number of triangles

on adaptive meshes and like N−1/4 on uniformly refined meshes.
Thus, the adaptive process enables us to recover the optimal rate
of convergence. The efficiency η/e of the estimator tends to about
7 for adaptive meshes and to 12 for uniformly refined meshes.

−1/4
N

uniform
adaptive

−1/2
N

 0.001

 0.01

 0.1

 1

 10  100  1000  10000  100000

E
rr

or

Number of triangles

 8

 10

 12

 14

 16

 10  100  1000  10000  100000

E
ffi

ci
en

cy

Number of triangles

adaptive
uniform

Fig. 3: Error and efficiency curves for adaptive and uniform meshes

4.2 Stiff solution

Let Ω =] − 1, 1[2. Let us choose f so that

φ̂ = cos(kπx) cos(kπy) + αχ(r) exp(1/ε2) exp[−1/(ε2 − r2)] .

with r =
√

x2 + y2 and χ(r) = 1 if r ≤ ε, while χ(r) = 0 if
r > ε. We set k = 1/2, α = 10 and ε = 1/4.
We consider ω = [−1/4, 1/4]2 and Ω \ ω is uniformly meshed
with squares of length h, while ω is uniformly meshed with squares
of length h0 = h/2p. The mesh corresponding to h = 1/4 and
h/h0 = 4 is presented on Fig. 4.
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Fig. 4: Left : Example of a non conforming mesh with h = 1/4
and p = 2. Right : Actual errors on meshes with various choices of
h and p.
The refinement is driven by the comparison of the average esti-

mator inside and outside ω. When one of them is more than twice
greater than the other, the corresponding part of the mesh is refined.
If not both parts of the mesh are refined. The initial mesh is uniform
with h = 1/4. The right part of Fig. 4 presents a cloud of points
with the actual errors corresponding to calculations performed on
meshes obtained with an arbitrary choice of the couple (h, h0). It
appears that refining uniformly is the worst strategy, while the error
curve for the proposed strategy is optimal. It leads to a refinement
of the initial mesh in the central region up to h/h0 = 16, with
h = 1/4, and then to a uniform refinement.
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